Пример #1
0
def test_center_region_assigner_with_ignore():
    self = CenterRegionAssigner(
        pos_scale=0.5,
        neg_scale=1,
    )
    bboxes = torch.FloatTensor([
        [0, 0, 10, 10],
        [10, 10, 20, 20],
    ])
    gt_bboxes = torch.FloatTensor([
        [0, 0, 10, 10],  # match bboxes[0]
        [10, 10, 20, 20],  # match bboxes[1]
    ])
    gt_bboxes_ignore = torch.FloatTensor([
        [0, 0, 10, 10],  # match bboxes[0]
    ])
    gt_labels = torch.LongTensor([1, 2])
    assign_result = self.assign(bboxes,
                                gt_bboxes,
                                gt_bboxes_ignore=gt_bboxes_ignore,
                                gt_labels=gt_labels)
    assert len(assign_result.gt_inds) == 2
    assert len(assign_result.labels) == 2

    expected_gt_inds = torch.LongTensor([-1, 2])
    assert torch.all(assign_result.gt_inds == expected_gt_inds)
Пример #2
0
def test_center_region_assigner_with_empty_bboxes():
    self = CenterRegionAssigner(
        pos_scale=0.5,
        neg_scale=1,
    )
    bboxes = torch.empty((0, 4)).float()
    gt_bboxes = torch.FloatTensor([
        [0, 0, 10, 10],  # match bboxes[0]
        [10, 10, 20, 20],  # match bboxes[1]
    ])
    gt_labels = torch.LongTensor([1, 2])
    assign_result = self.assign(bboxes, gt_bboxes, gt_labels=gt_labels)
    assert assign_result.gt_inds is None or assign_result.gt_inds.numel() == 0
    assert assign_result.labels is None or assign_result.labels.numel() == 0
Пример #3
0
def test_center_region_assigner_with_empty_gts():
    self = CenterRegionAssigner(
        pos_scale=0.5,
        neg_scale=1,
    )
    bboxes = torch.FloatTensor([
        [0, 0, 10, 10],
        [10, 10, 20, 20],
    ])
    gt_bboxes = torch.empty((0, 4)).float()
    gt_labels = torch.empty((0, )).long()
    assign_result = self.assign(bboxes, gt_bboxes, gt_labels=gt_labels)
    assert len(assign_result.gt_inds) == 2
    expected_gt_inds = torch.LongTensor([0, 0])
    assert torch.all(assign_result.gt_inds == expected_gt_inds)
Пример #4
0
def test_center_region_assigner():
    self = CenterRegionAssigner(pos_scale=0.3, neg_scale=1)
    bboxes = torch.FloatTensor([[0, 0, 10, 10], [10, 10, 20, 20], [8, 8, 9,
                                                                   9]])
    gt_bboxes = torch.FloatTensor([
        [0, 0, 11, 11],  # match bboxes[0]
        [10, 10, 20, 20],  # match bboxes[1]
        [4.5, 4.5, 5.5, 5.5],  # match bboxes[0] but area is too small
        [0, 0, 10, 10],  # match bboxes[1] and has a smaller area than gt[0]
    ])
    gt_labels = torch.LongTensor([2, 3, 4, 5])
    assign_result = self.assign(bboxes, gt_bboxes, gt_labels=gt_labels)
    assert len(assign_result.gt_inds) == 3
    assert len(assign_result.labels) == 3
    expected_gt_inds = torch.LongTensor([4, 2, 0])
    assert torch.all(assign_result.gt_inds == expected_gt_inds)
    shadowed_labels = assign_result.get_extra_property('shadowed_labels')
    # [8, 8, 9, 9] in the shadowed region of [0, 0, 11, 11] (label: 2)
    assert torch.any(shadowed_labels == torch.LongTensor([[2, 2]]))
    # [8, 8, 9, 9] in the shadowed region of [0, 0, 10, 10] (label: 5)
    assert torch.any(shadowed_labels == torch.LongTensor([[2, 5]]))
    # [0, 0, 10, 10] is already assigned to [4.5, 4.5, 5.5, 5.5].
    #   Therefore, [0, 0, 11, 11] (label: 2) is shadowed
    assert torch.any(shadowed_labels == torch.LongTensor([[0, 2]]))