Пример #1
0
    def simple_test(self, img, img_meta, proposals=None, rescale=False):
        """Test without augmentation."""
        assert self.with_bbox, "Bbox head must be implemented."
        assert self.with_track, "Track head must be implemented"
        x = self.extract_feat(img)

        proposal_list = self.simple_test_rpn(
            x, img_meta, self.test_cfg.rpn) if proposals is None else proposals

        det_bboxes, det_labels, det_obj_ids = self.simple_test_bboxes(
            x, img_meta, proposal_list, self.test_cfg.rcnn, rescale=rescale)

        bbox_results = bbox2result_with_id(det_bboxes, det_labels, det_obj_ids,
                                           self.bbox_head.num_classes)

        if not self.with_mask:
            return bbox_results
        else:
            segm_results = self.simple_test_mask(x,
                                                 img_meta,
                                                 det_bboxes,
                                                 det_labels,
                                                 rescale=rescale,
                                                 det_obj_ids=det_obj_ids)
            return bbox_results, segm_results
Пример #2
0
 def simple_test(self, img, img_meta, proposals=None, rescale=False):
     """Test without augmentation."""
     (det_bboxes,
      det_labels), segm_results, det_obj_ids = self.simple_test_bboxes(
          img, img_meta, proposals, rescale)
     bbox_results = bbox2result_with_id(det_bboxes, det_labels, det_obj_ids,
                                        self.bbox_head.num_classes)
     return bbox_results, segm_results
Пример #3
0
    def low_test(self, img, img_meta, key_img, key_feats, proposals=None, rescale=False):
        """Test with Flow Head."""
        full_img = key_img
        current_img = img
        feat_last = key_feats
        size_full = full_img.shape
        size_current = current_img.shape
        if size_full[-1] >= size_current[-1]:
            size = size_current[-2:]
            full_img = self.resize(full_img, size)
        else:
            size = size_full[-2:]
            current_img = self.resize(current_img, size)

        # flow
        flow_output = self.flow_head(full_img, current_img)
        upsampling = None
        if upsampling is not None:
            flow_output = F.interpolate(flow_output, size=current_img.size()[-2:], mode='bilinear', align_corners=False)
        # extract feat
        x, _ = self.extract_feat(img)
        # img_size = img.shape[-2:]
        # x = self.warp_feat(feat_last, flow_output*20, (img_size[0], img_size[1]), mode='warp')
        proposal_list = self.simple_test_rpn(
            x, img_meta, self.test_cfg.rpn) if proposals is None else proposals

        det_bboxes, det_labels, det_obj_ids = self.simple_test_bboxes(
            x, img_meta, proposal_list, self.test_cfg.rcnn, rescale=rescale)
        bbox_results = bbox2result_with_id(det_bboxes, det_labels, det_obj_ids,
                                   self.bbox_head.num_classes)

        def feat_fusion(x, feat_last):
            feat = []
            for i in range(len(x)):
                _size = x[i].shape[-2:]
                _tmp = torch.nn.functional.interpolate(feat_last[i], _size, mode='bilinear', align_corners=True)
                # feat.append(torch.max(x[i], _tmp))
                # feat.append((x[i] + _tmp) / 2)
                feat.append((x[i] + _tmp))

            return tuple(feat)
        img_size = img.shape[-2:]
        x = self.warp_feat(feat_last, flow_output*20, (img_size[0], img_size[1]), mode='warp')
        # x_flow = self.warp_feat(feat_last, flow_outputs1)
        # x1 = [resize(x_f, x11.shape[-2:]) for x_f, x11 in zip(x_flow, x)]
        # x1 = feat_fusion(x, x_flow)
        if not self.with_mask:
            return bbox_results
        else:
            segm_results = self.simple_test_mask(
                x, img_meta, det_bboxes, det_labels,
                rescale=rescale, det_obj_ids=det_obj_ids)

            return bbox_results, segm_results, None
Пример #4
0
 def simple_test(self, img, img_meta, rescale=False):
     x = self.extract_feat(img)
     outs = self.bbox_head(x, x, False)
     bbox_inputs = outs + (img_meta, self.test_cfg, rescale)
     bbox_list = self.bbox_head.get_bboxes(*bbox_inputs)
     bbox_results = [
         bbox2result_with_id(det_bboxes, det_labels, det_obj_ids)
         for det_bboxes, det_labels, cls_segms, det_obj_ids in bbox_list
     ]
     segm_results = [
         cls_segms
         for det_bboxes, det_labels, cls_segms, det_obj_ids in bbox_list
     ]
     return bbox_results[0], segm_results[0]
Пример #5
0
    def simple_test(self, img, img_meta, proposals=None, rescale=False):
        """Test without augmentation."""
        assert self.with_bbox, "Bbox head must be implemented."
        assert self.with_track, "Track head must be implemented"

        import time
        t0 = time.time()

        x = self.extract_feat(img)

        t1 = time.time()
        # print("time cost from begin to feature map is: {}".format(t1 - t0))

        proposal_list = self.simple_test_rpn(
            x, img_meta, self.test_cfg.rpn) if proposals is None else proposals

        t2 = time.time()
        # print("time cost from feature map to proposal list is: {}".format(t2 - t1))

        det_bboxes, det_labels, det_obj_ids = self.simple_test_bboxes(
            x, img_meta, proposal_list, self.test_cfg.rcnn, rescale=rescale)
        bbox_results = bbox2result_with_id(det_bboxes, det_labels, det_obj_ids,
                                           self.bbox_head.num_classes)

        t3 = time.time()
        # print("time cost from begin to bbox and label is: {}".format(t3 - t2))
        if not self.with_mask:
            return bbox_results
        else:
            segm_results = self.simple_test_mask(x,
                                                 img_meta,
                                                 det_bboxes,
                                                 det_labels,
                                                 rescale=rescale,
                                                 det_obj_ids=det_obj_ids)

            t4 = time.time()
            # print("time cost from bbox to mask is: {}".format(t4 - t3))

            # print("time cost is: {}\t {}\t {}\t {}\t".format(t1 - t0, t2 - t1, t3 - t2, t4 - t3))
            # return bbox_results, segm_results, np.array([t1 - t0, t2 - t1, t3 - t2, t4 - t3])
            return bbox_results, segm_results
Пример #6
0
    def full_test(self, img, img_meta, proposals=None, rescale=False):
        """Test without Flow Head."""
        x, _ = self.extract_feat(img)
        key_feat_maps = x

        proposal_list = self.simple_test_rpn(
            x, img_meta, self.test_cfg.rpn) if proposals is None else proposals

        det_bboxes, det_labels, det_obj_ids = self.simple_test_bboxes(
            x, img_meta, proposal_list, self.test_cfg.rcnn, rescale=rescale)
        bbox_results = bbox2result_with_id(det_bboxes, det_labels, det_obj_ids,
                                   self.bbox_head.num_classes)

        if not self.with_mask:
            return bbox_results
        else:
            segm_results = self.simple_test_mask(
                x, img_meta, det_bboxes, det_labels,
                rescale=rescale, det_obj_ids=det_obj_ids)

            return bbox_results, segm_results, key_feat_maps
Пример #7
0
    def simple_test(self,
                    img,
                    img_meta,
                    proposals=None,
                    rescale=False,
                    ref_img=None):
        """Test without augmentation."""
        im_info = np.array([[float(img.shape[2]), float(img.shape[3]), 1.0]])
        x = self.extract_feat(img)

        # **********************************
        # FCN Semantic Head forward test
        # **********************************
        assert hasattr(
            self, 'panopticFPN'
        ) and self.panopticFPN is not None, "FCN HEAD must be implemented."
        fcn_output, fcn_score = self.panopticFPN(
            x[0:self.panopticFPN.num_levels])

        # ***************************
        # RPN forward test
        # ***************************
        assert proposals is None
        proposal_list = self.simple_test_rpn(x, img_meta, self.test_cfg.rpn)

        # *******************************
        # bbox head forward test
        # *******************************
        assert self.with_bbox, "Bbox head must be implemented."
        assert self.with_track, "Track head must be implemented."
        det_bboxes, det_labels, det_obj_ids, best_match_scores, cls_score, bbox_pred, cls_prob, mask_rois, cls_idx = \
                self.simple_test_bboxes(
                        x, img_meta, proposal_list,
                        self.test_cfg.rcnn, im_info,
                        rescale=rescale, is_panoptic=True)

        bbox_results = bbox2result_with_id(det_bboxes, det_labels, det_obj_ids,
                                           self.bbox_head.num_classes)

        # *******************************
        # mask head forward test
        # *******************************
        assert self.with_bbox, "Mask head must be implemented."
        mask_results = self.simple_test_mask(x,
                                             img_meta,
                                             det_bboxes,
                                             det_labels,
                                             rescale=rescale,
                                             det_obj_ids=det_obj_ids)

        # *******************************
        # Panoptic head forward test
        # *******************************
        assert hasattr(self, 'panopticFPN') and self.panopticFPN is not None
        assert hasattr(self.test_cfg, 'loss_pano_weight')
        mask_feats = self.mask_roi_extractor(
            x[:self.mask_roi_extractor.num_inputs], mask_rois)
        # [#bbox,256,14,14]
        mask_score = self.mask_head(mask_feats)
        # [#bbox,#things+1,28,28], # things+1=9 (Cityscapes-thing)
        nobj, _, H, W = mask_score.shape
        mask_score = mask_score.gather(
            1,
            cls_idx.view(-1, 1, 1, 1).expand(-1, -1, H, W))
        # [#bbox,1,28,28]

        # compute panoptic logits
        keep_inds, mask_logits = self.mask_removal(mask_rois[:, 1:], cls_prob,
                                                   mask_score, cls_idx,
                                                   fcn_output.shape[2:])
        # convert det_obj_ids to torch tensor
        det_obj_ids = torch.from_numpy(det_obj_ids).to(cls_idx.device)
        # mask logits [1,k,1024,2048]
        mask_rois = mask_rois[keep_inds]  #[k,5]
        cls_idx = cls_idx[keep_inds]  #[k]
        det_labels = det_labels[keep_inds]  #[k]
        det_obj_ids = det_obj_ids[keep_inds]  #[k]
        cls_prob = cls_prob[keep_inds]  #[k]

        # get semantic segm logits
        seg_stuff_logits, seg_inst_logits = self.seg_term(
            cls_idx, fcn_output, mask_rois * 4.0)
        # seg_stuff_logits [1,11,1024,2048]
        # seg_inst_logits [1,k,1024,2048]
        panoptic_logits = torch.cat(
            [seg_stuff_logits, (seg_inst_logits + mask_logits)], dim=1)
        panoptic_output = torch.max(F.softmax(panoptic_logits, dim=1),
                                    dim=1)[1]
        # fcn_output [1,1024,2048]
        fcn_output = torch.max(F.softmax(fcn_output, dim=1), dim=1)[1]
        # trim out the padded boundaries --> original input shape
        img_shape_withoutpad = img_meta[0]['img_shape']
        fcn_output = fcn_output[:, 0:img_shape_withoutpad[0],
                                0:img_shape_withoutpad[1]]
        panoptic_output = panoptic_output[:, 0:img_shape_withoutpad[0],
                                          0:img_shape_withoutpad[1]]
        pano_results = {
            'fcn_outputs': fcn_output,
            'panoptic_cls_inds': cls_idx,
            'panoptic_cls_prob': cls_prob,
            'panoptic_det_labels': det_labels,
            'panoptic_det_obj_ids': det_obj_ids,
            'panoptic_outputs': panoptic_output,
        }
        return bbox_results, mask_results, pano_results
Пример #8
0
    def simple_test(self,
                    img,
                    img_meta,
                    proposals=None,
                    rescale=False,
                    key_frame=False):
        """Test without augmentation."""
        assert self.with_bbox, "Bbox head must be implemented."
        assert self.with_track, "Track head must be implemented"

        is_first = img_meta[0]['is_first']
        if is_first:
            self.prev_img = img
        # extract feature maps
        x, feat_res0 = self.extract_feat(img)

        # save feature maps of key frame.
        if key_frame:
            self.key_feat_maps = x
            self.key_feat_res0 = feat_res0

        feat_maps = list(x)

        # get proposal list
        proposal_list = self.simple_test_rpn(
            x, img_meta, self.test_cfg.rpn) if proposals is None else proposals

        # get bbox results
        det_bboxes, det_labels, det_obj_ids = self.simple_test_bboxes(
            x, img_meta, proposal_list, self.test_cfg.rcnn, rescale=rescale)
        bbox_results = bbox2result_with_id(det_bboxes, det_labels, det_obj_ids,
                                           self.bbox_head.num_classes)

        if not self.with_mask:
            return bbox_results
        else:
            # get segmentation results using original net if current frame is key frame.
            if key_frame:
                segm_results = self.simple_test_mask(x,
                                                     img_meta,
                                                     det_bboxes,
                                                     det_labels,
                                                     rescale=rescale,
                                                     det_obj_ids=det_obj_ids)

                return bbox_results, segm_results

            # get segmentation results using flownet and feature warping
            # if current frame is not key frame.
            else:
                # Turn feature maps to certain size.
                # (b, c, 48, 64) for feature map and (b, c, 96, 128) for resnet-50 layer0 feature.
                current_feat_map = self.resize(feat_maps[0])
                key_feat_map = self.resize(self.key_feat_maps[0])
                key_feat_res0 = self.resize(self.key_feat_res0, size=(96, 128))
                key_feat_res0 = torch.cat((key_feat_res0, key_feat_res0),
                                          1)  # channel from 64 to 128

                # get flow results
                flow_output = self.flow_head(current_feat_map,
                                             [key_feat_res0, key_feat_map])
                # print("max flow:{}\t min flow:{}".format(torch.max(flow_output), torch.min(flow_output)))

                # visualization
                # rgb_flow = self.flow_head.flow2rgb(20 * flow_output[0], max_value=20)
                # to_save = (rgb_flow * 255).astype(np.uint8).transpose(1,2,0)
                # mmcv.imwrite(to_save, '/home/ubuntu/code/fengda/MaskTrackRCNN/flow.jpg')

                # feature warping
                current_feat_warped = warp(key_feat_map, flow_output)

                # rescale feature map
                feat_maps[0] = self.resize(current_feat_warped,
                                           size=x[0].shape[-2:])

                # get segmentation results
                segm_results = self.simple_test_mask(tuple(feat_maps),
                                                     img_meta,
                                                     det_bboxes,
                                                     det_labels,
                                                     rescale=rescale,
                                                     det_obj_ids=det_obj_ids)
                return bbox_results, segm_results
Пример #9
0
    def simple_test(self,
                    img,
                    img_meta,
                    inp_seq=None,
                    rescale=False,
                    show=False):
        """Test without augmentation."""
        assert self.with_bbox, "Bbox head must be implemented."

        bbox_result_seq = []
        segm_result_seq = []
        mask_cluster_seq = []
        mask_cluster_orig_seq = []

        M_seq = []

        if self.bidirectional:
            for inp in inp_seq:
                fms = list(self.backbone(inp['img'][0]))
                M_seq.append(fms)

            fms_f = []
            hidden = None
            for fms in M_seq:
                hidden = self.gru_model(fms[self.rnn_level], hidden)
                fms_f.append(hidden[-1])

            fms_b = []
            hidden = None
            for fms in reversed(M_seq):
                hidden = self.gru_model(fms[self.rnn_level], hidden)
                fms_b.append(hidden[-1])

            fms_b.reverse()

            for i, (fm_f, fm_b) in enumerate(zip(fms_f, fms_b)):
                M_seq[i][self.rnn_level] = torch.cat((fm_f, fm_b), 1)

                M_seq[i] = self.neck(M_seq[i])
        else:
            hidden = None
            for im in img_seq:
                fms = list(self.forward_to_neck(im))

                hidden = self.gru_model(fms[self.rnn_level], hidden)
                fms[self.rnn_level] = hidden[-1]
                M_seq.append(fms)

        #extract end

        for e, (x, inp) in enumerate(zip(M_seq, inp_seq)):
            img_meta = inp['img_meta'][0]
            proposal_list = self.simple_test_rpn(x, img_meta,
                                                 self.test_cfg.rpn)

            det_bboxes, det_labels = self.simple_test_bboxes(
                x,
                img_meta,
                proposal_list,
                self.test_cfg.rcnn,
                rescale=rescale)

            segm_results, mask_clusters_orig, roi_cluster_ids, roi_indeces, self.mask_roi_map = self.simple_video_test_mask(
                x,
                img_meta,
                det_bboxes,
                det_labels,
                self.mask_roi_map,
                rescale=rescale)

            mask_clusters_o = np.concatenate(
                (mask_clusters_orig, np.zeros_like(
                    mask_clusters_orig[:, :, :1])),
                axis=2)
            mask_clusters_o = mask_clusters_o.argmax(2)

            if e == 0:
                if self.prev_mask_clusters is not None:
                    matched_idx = matching(mask_clusters_o,
                                           self.prev_mask_clusters, self.ids)
                    self.inv_mask = np.concatenate(
                        [np.zeros(1), self.ids[matched_idx]])

            mask_clusters = self.inv_mask[mask_clusters_o]

            def inv_roi(orig_roi_id):
                key_list = list(self.mask_roi_map.keys())
                val_list = list(self.mask_roi_map.values())
                orig_mask_id = key_list[val_list.index(orig_roi_id)]
                mask_id = self.inv_mask[orig_mask_id]
                return self.prev_mask_roi_map[mask_id]

            if self.prev_mask_roi_map:
                if isinstance(segm_results, dict):
                    segm_results = {
                        self.inv_mask[roi_cluster_id]: obj_segm
                        for roi_cluster_id, obj_segm in segm_results.items()
                    }
                roi_cluster_ids = [
                    inv_roi(roi_cluster_id)
                    for roi_cluster_id in roi_cluster_ids
                ]
            else:
                self.prev_mask_roi_map = self.mask_roi_map

            det_bboxes = det_bboxes[roi_indeces]
            det_labels = det_labels[roi_indeces]

            bbox_results = bbox2result_with_id(det_bboxes, det_labels,
                                               roi_cluster_ids,
                                               self.bbox_head.num_classes)

            bbox_result_seq.append(bbox_results)
            segm_result_seq.append(segm_results)
            mask_clusters_vis = np.concatenate(
                ((mask_clusters == 1)[:, :, None],
                 (mask_clusters == 2)[:, :, None],
                 (mask_clusters == 3)[:, :, None]),
                axis=2)
            mask_cluster_seq.append(mask_clusters_vis)
            mask_cluster_orig_seq.append(mask_clusters_orig)

            if e == len(M_seq) - 1:
                self.prev_mask_clusters = mask_clusters
                self.prev_mask_roi_map = self.mask_roi_map

        if show:
            return bbox_result_seq, segm_result_seq, mask_cluster_seq, mask_cluster_orig_seq
        else:
            return bbox_result_seq, segm_result_seq