Пример #1
0
    def __init__(self,
                 inplanes,
                 planes,
                 stride=1,
                 dilation=1,
                 downsample=None,
                 style='pytorch',
                 with_cp=False,
                 conv_cfg=None,
                 norm_cfg=dict(type='BN'),
                 dcn=None,
                 gcb=None,
                 gen_attention=None):
        """Bottleneck block for ResNet.

        If style is "pytorch", the stride-two layer is the 3x3 conv layer, if
        it is "caffe", the stride-two layer is the first 1x1 conv layer.
        """
        super(Bottleneck, self).__init__()
        assert style in ['pytorch', 'caffe']
        assert dcn is None or isinstance(dcn, dict)
        assert gcb is None or isinstance(gcb, dict)
        assert gen_attention is None or isinstance(gen_attention, dict)

        self.inplanes = inplanes
        self.planes = planes
        self.stride = stride
        self.dilation = dilation
        self.style = style
        self.with_cp = with_cp
        self.conv_cfg = conv_cfg
        self.norm_cfg = norm_cfg
        self.dcn = dcn
        self.with_dcn = dcn is not None
        self.gcb = gcb
        self.with_gcb = gcb is not None
        self.gen_attention = gen_attention
        self.with_gen_attention = gen_attention is not None

        if self.style == 'pytorch':
            self.conv1_stride = 1
            self.conv2_stride = stride
        else:
            self.conv1_stride = stride
            self.conv2_stride = 1

        self.norm1_name, norm1 = build_norm_layer(norm_cfg, planes, postfix=1)
        self.norm2_name, norm2 = build_norm_layer(norm_cfg, planes, postfix=2)
        self.norm3_name, norm3 = build_norm_layer(norm_cfg,
                                                  planes * self.expansion,
                                                  postfix=3)

        self.conv1 = build_conv_layer(conv_cfg,
                                      inplanes,
                                      planes,
                                      kernel_size=1,
                                      stride=self.conv1_stride,
                                      bias=False)
        self.add_module(self.norm1_name, norm1)
        fallback_on_stride = False
        if self.with_dcn:
            fallback_on_stride = dcn.pop('fallback_on_stride', False)
        if not self.with_dcn or fallback_on_stride:
            self.conv2 = build_conv_layer(conv_cfg,
                                          planes,
                                          planes,
                                          kernel_size=3,
                                          stride=self.conv2_stride,
                                          padding=dilation,
                                          dilation=dilation,
                                          bias=False)
        else:
            assert self.conv_cfg is None, 'conv_cfg cannot be None for DCN'
            self.conv2 = build_conv_layer(dcn,
                                          planes,
                                          planes,
                                          kernel_size=3,
                                          stride=self.conv2_stride,
                                          padding=dilation,
                                          dilation=dilation,
                                          bias=False)

        self.add_module(self.norm2_name, norm2)
        self.conv3 = build_conv_layer(conv_cfg,
                                      planes,
                                      planes * self.expansion,
                                      kernel_size=1,
                                      bias=False)
        self.add_module(self.norm3_name, norm3)

        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample

        if self.with_gcb:
            gcb_inplanes = planes * self.expansion
            self.context_block = ContextBlock(inplanes=gcb_inplanes, **gcb)

        # gen_attention
        if self.with_gen_attention:
            self.gen_attention_block = GeneralizedAttention(
                planes, **gen_attention)
Пример #2
0
    def __init__(self,
                 inplanes,
                 planes,
                 stride=1,
                 dilation=1,
                 downsample=None,
                 style='pytorch',
                 with_cp=False,
                 conv_cfg=None,
                 norm_cfg=dict(type='BN'),
                 dcn=None,
                 gcb=None,
                 gen_attention=None,
                 scale=4,
                 baseWidth=26,
                 stype='normal'):
        """Bottle2neck block for Res2Net.
        If style is "pytorch", the stride-two layer is the 3x3 conv layer,
        if it is "caffe", the stride-two layer is the first 1x1 conv layer.
        """
        super(Bottle2neck, self).__init__()
        assert style in ['pytorch', 'caffe']
        assert dcn is None or isinstance(dcn, dict)
        assert gcb is None or isinstance(gcb, dict)
        assert gen_attention is None or isinstance(gen_attention, dict)

        width = int(math.floor(planes * (baseWidth / 64.0)))
        self.inplanes = inplanes
        self.planes = planes
        self.stride = stride
        self.dilation = dilation
        self.style = style
        self.with_cp = with_cp
        self.conv_cfg = conv_cfg
        self.norm_cfg = norm_cfg
        self.dcn = dcn
        self.with_dcn = dcn is not None
        self.gcb = gcb
        self.with_gcb = gcb is not None
        self.gen_attention = gen_attention
        self.with_gen_attention = gen_attention is not None

        if self.style == 'pytorch':
            self.conv1_stride = 1
            self.conv2_stride = stride
        else:
            self.conv1_stride = stride
            self.conv2_stride = 1

        self.norm1_name, norm1 = build_norm_layer(norm_cfg,
                                                  width * scale,
                                                  postfix=1)
        self.norm3_name, norm3 = build_norm_layer(norm_cfg,
                                                  planes * self.expansion,
                                                  postfix=3)

        self.conv1 = build_conv_layer(conv_cfg,
                                      inplanes,
                                      width * scale,
                                      kernel_size=1,
                                      stride=self.conv1_stride,
                                      bias=False)
        self.add_module(self.norm1_name, norm1)

        if scale == 1:
            self.nums = 1
        else:
            self.nums = scale - 1
        if stype == 'stage':
            self.pool = nn.AvgPool2d(kernel_size=3, stride=stride, padding=1)
        convs = []
        bns = []

        fallback_on_stride = False
        if self.with_dcn:
            fallback_on_stride = dcn.pop('fallback_on_stride', False)
        if not self.with_dcn or fallback_on_stride:
            for i in range(self.nums):
                convs.append(
                    build_conv_layer(conv_cfg,
                                     width,
                                     width,
                                     kernel_size=3,
                                     stride=self.conv2_stride,
                                     padding=dilation,
                                     dilation=dilation,
                                     bias=False))
                bns.append(build_norm_layer(norm_cfg, width, postfix=i + 1)[1])
            self.convs = nn.ModuleList(convs)
            self.bns = nn.ModuleList(bns)
        else:
            assert self.conv_cfg is None, 'conv_cfg cannot be None for DCN'
            for i in range(self.nums):
                convs.append(
                    build_conv_layer(dcn,
                                     width,
                                     width,
                                     kernel_size=3,
                                     stride=self.conv2_stride,
                                     padding=dilation,
                                     dilation=dilation,
                                     bias=False))
                bns.append(build_norm_layer(norm_cfg, width, postfix=i + 1)[1])
            self.convs = nn.ModuleList(convs)
            self.bns = nn.ModuleList(bns)

        self.conv3 = build_conv_layer(conv_cfg,
                                      width * scale,
                                      planes * self.expansion,
                                      kernel_size=1,
                                      bias=False)
        self.add_module(self.norm3_name, norm3)

        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stype = stype
        self.scale = scale
        self.width = width

        if self.with_gcb:
            gcb_inplanes = planes * self.expansion
            self.context_block = ContextBlock(inplanes=gcb_inplanes, **gcb)

        # gen_attention
        if self.with_gen_attention:
            self.gen_attention_block = GeneralizedAttention(
                planes, **gen_attention)