Пример #1
0
def test_object_noise():
    np.random.seed(0)
    object_noise = ObjectNoise()
    points = np.fromfile(
        './tests/data/kitti/training/velodyne_reduced/000000.bin',
        np.float32).reshape(-1, 4)
    annos = mmcv.load('./tests/data/kitti/kitti_infos_train.pkl')
    info = annos[0]
    rect = info['calib']['R0_rect'].astype(np.float32)
    Trv2c = info['calib']['Tr_velo_to_cam'].astype(np.float32)
    annos = info['annos']
    loc = annos['location']
    dims = annos['dimensions']
    rots = annos['rotation_y']
    gt_bboxes_3d = np.concatenate([loc, dims, rots[..., np.newaxis]],
                                  axis=1).astype(np.float32)
    gt_bboxes_3d = CameraInstance3DBoxes(gt_bboxes_3d).convert_to(
        Box3DMode.LIDAR, np.linalg.inv(rect @ Trv2c))
    points = LiDARPoints(points, points_dim=4)
    input_dict = dict(points=points, gt_bboxes_3d=gt_bboxes_3d)
    input_dict = object_noise(input_dict)
    points = input_dict['points']
    gt_bboxes_3d = input_dict['gt_bboxes_3d'].tensor
    expected_gt_bboxes_3d = torch.tensor(
        [[9.1724, -1.7559, -1.3550, 0.4800, 1.2000, 1.8900, 0.0505]])
    repr_str = repr(object_noise)
    expected_repr_str = 'ObjectNoise(num_try=100, ' \
                        'translation_std=[0.25, 0.25, 0.25], ' \
                        'global_rot_range=[0.0, 0.0], ' \
                        'rot_range=[-0.15707963267, 0.15707963267])'

    assert repr_str == expected_repr_str
    assert points.tensor.numpy().shape == (800, 4)
    assert torch.allclose(gt_bboxes_3d, expected_gt_bboxes_3d, 1e-3)
Пример #2
0
def test_object_sample():
    db_sampler = mmcv.ConfigDict({
        'data_root': './tests/data/kitti/',
        'info_path': './tests/data/kitti/kitti_dbinfos_train.pkl',
        'rate': 1.0,
        'prepare': {
            'filter_by_difficulty': [-1],
            'filter_by_min_points': {
                'Pedestrian': 10
            }
        },
        'classes': ['Pedestrian', 'Cyclist', 'Car'],
        'sample_groups': {
            'Pedestrian': 6
        }
    })
    object_sample = ObjectSample(db_sampler)
    points = np.fromfile(
        './tests/data/kitti/training/velodyne_reduced/000000.bin',
        np.float32).reshape(-1, 4)
    annos = mmcv.load('./tests/data/kitti/kitti_infos_train.pkl')
    info = annos[0]
    rect = info['calib']['R0_rect'].astype(np.float32)
    Trv2c = info['calib']['Tr_velo_to_cam'].astype(np.float32)
    annos = info['annos']
    loc = annos['location']
    dims = annos['dimensions']
    rots = annos['rotation_y']
    gt_names = annos['name']

    gt_bboxes_3d = np.concatenate([loc, dims, rots[..., np.newaxis]],
                                  axis=1).astype(np.float32)
    gt_bboxes_3d = CameraInstance3DBoxes(gt_bboxes_3d).convert_to(
        Box3DMode.LIDAR, np.linalg.inv(rect @ Trv2c))
    CLASSES = ('car', 'pedestrian', 'cyclist')
    gt_labels = []
    for cat in gt_names:
        if cat in CLASSES:
            gt_labels.append(CLASSES.index(cat))
        else:
            gt_labels.append(-1)
    input_dict = dict(
        points=points, gt_bboxes_3d=gt_bboxes_3d, gt_labels_3d=gt_labels)
    input_dict = object_sample(input_dict)
    points = input_dict['points']
    gt_bboxes_3d = input_dict['gt_bboxes_3d']
    gt_labels_3d = input_dict['gt_labels_3d']

    expected_gt_bboxes_3d = torch.tensor(
        [[8.7314, -1.8559, -1.5997, 0.4800, 1.2000, 1.8900, 0.0100],
         [8.7314, -1.8559, -1.5997, 0.4800, 1.2000, 1.8900, 0.0100]])
    expected_gt_labels_3d = np.array([-1, 0])
    repr_str = repr(object_sample)
    expected_repr_str = 'ObjectSample'
    assert repr_str == expected_repr_str
    assert points.shape == (1177, 4)
    assert torch.allclose(gt_bboxes_3d.tensor, expected_gt_bboxes_3d)
    assert np.all(gt_labels_3d == expected_gt_labels_3d)
Пример #3
0
def test_background_points_filter():
    np.random.seed(0)
    background_points_filter = BackgroundPointsFilter((0.5, 2.0, 0.5))
    points = np.fromfile(
        './tests/data/kitti/training/velodyne_reduced/000000.bin',
        np.float32).reshape(-1, 4)
    orig_points = points.copy()
    annos = mmcv.load('./tests/data/kitti/kitti_infos_train.pkl')
    info = annos[0]
    rect = info['calib']['R0_rect'].astype(np.float32)
    Trv2c = info['calib']['Tr_velo_to_cam'].astype(np.float32)
    annos = info['annos']
    loc = annos['location']
    dims = annos['dimensions']
    rots = annos['rotation_y']
    gt_bboxes_3d = np.concatenate([loc, dims, rots[..., np.newaxis]],
                                  axis=1).astype(np.float32)
    gt_bboxes_3d = CameraInstance3DBoxes(gt_bboxes_3d).convert_to(
        Box3DMode.LIDAR, np.linalg.inv(rect @ Trv2c))
    extra_points = gt_bboxes_3d.corners.reshape(8, 3)[[1, 2, 5, 6], :]
    extra_points[:, 2] += 0.1
    extra_points = torch.cat([extra_points, extra_points.new_zeros(4, 1)], 1)
    points = np.concatenate([points, extra_points.numpy()], 0)
    points = LiDARPoints(points, points_dim=4)
    input_dict = dict(points=points, gt_bboxes_3d=gt_bboxes_3d)
    origin_gt_bboxes_3d = gt_bboxes_3d.clone()
    input_dict = background_points_filter(input_dict)

    points = input_dict['points'].tensor.numpy()
    repr_str = repr(background_points_filter)
    expected_repr_str = 'BackgroundPointsFilter(bbox_enlarge_range=' \
                        '[[0.5, 2.0, 0.5]])'
    assert repr_str == expected_repr_str
    assert points.shape == (800, 4)
    assert np.equal(orig_points, points).all()
    assert np.equal(input_dict['gt_bboxes_3d'].tensor.numpy(),
                    origin_gt_bboxes_3d.tensor.numpy()).all()

    # test single float config
    BackgroundPointsFilter(0.5)

    # The length of bbox_enlarge_range should be 3
    with pytest.raises(AssertionError):
        BackgroundPointsFilter((0.5, 2.0))
Пример #4
0
def test_object_name_filter():
    class_names = ['Pedestrian']
    object_name_filter = ObjectNameFilter(class_names)

    annos = mmcv.load('./tests/data/kitti/kitti_infos_train.pkl')
    info = annos[0]
    rect = info['calib']['R0_rect'].astype(np.float32)
    Trv2c = info['calib']['Tr_velo_to_cam'].astype(np.float32)
    annos = info['annos']
    loc = annos['location']
    dims = annos['dimensions']
    rots = annos['rotation_y']
    gt_names = annos['name']

    gt_bboxes_3d = np.concatenate([loc, dims, rots[..., np.newaxis]],
                                  axis=1).astype(np.float32)
    gt_bboxes_3d = CameraInstance3DBoxes(gt_bboxes_3d).convert_to(
        Box3DMode.LIDAR, np.linalg.inv(rect @ Trv2c))
    CLASSES = ('Pedestrian', 'Cyclist', 'Car')
    gt_labels = []
    for cat in gt_names:
        if cat in CLASSES:
            gt_labels.append(CLASSES.index(cat))
        else:
            gt_labels.append(-1)
    gt_labels = np.array(gt_labels, dtype=np.long)
    input_dict = dict(gt_bboxes_3d=gt_bboxes_3d.clone(),
                      gt_labels_3d=gt_labels.copy())

    results = object_name_filter(input_dict)
    bboxes_3d = results['gt_bboxes_3d']
    labels_3d = results['gt_labels_3d']
    keep_mask = np.array([name in class_names for name in gt_names])
    assert torch.allclose(gt_bboxes_3d.tensor[keep_mask], bboxes_3d.tensor)
    assert np.all(gt_labels[keep_mask] == labels_3d)

    repr_str = repr(object_name_filter)
    expected_repr_str = f'ObjectNameFilter(classes={class_names})'
    assert repr_str == expected_repr_str
Пример #5
0
def test_object_sample():
    db_sampler = mmcv.ConfigDict({
        'data_root': './tests/data/kitti/',
        'info_path': './tests/data/kitti/kitti_dbinfos_train.pkl',
        'rate': 1.0,
        'prepare': {
            'filter_by_difficulty': [-1],
            'filter_by_min_points': {
                'Pedestrian': 10
            }
        },
        'classes': ['Pedestrian', 'Cyclist', 'Car'],
        'sample_groups': {
            'Pedestrian': 6
        }
    })
    np.random.seed(0)
    object_sample = ObjectSample(db_sampler)
    points = np.fromfile(
        './tests/data/kitti/training/velodyne_reduced/000000.bin',
        np.float32).reshape(-1, 4)
    annos = mmcv.load('./tests/data/kitti/kitti_infos_train.pkl')
    info = annos[0]
    rect = info['calib']['R0_rect'].astype(np.float32)
    Trv2c = info['calib']['Tr_velo_to_cam'].astype(np.float32)
    annos = info['annos']
    loc = annos['location']
    dims = annos['dimensions']
    rots = annos['rotation_y']
    gt_names = annos['name']

    gt_bboxes_3d = np.concatenate([loc, dims, rots[..., np.newaxis]],
                                  axis=1).astype(np.float32)
    gt_bboxes_3d = CameraInstance3DBoxes(gt_bboxes_3d).convert_to(
        Box3DMode.LIDAR, np.linalg.inv(rect @ Trv2c))
    CLASSES = ('Pedestrian', 'Cyclist', 'Car')
    gt_labels = []
    for cat in gt_names:
        if cat in CLASSES:
            gt_labels.append(CLASSES.index(cat))
        else:
            gt_labels.append(-1)
    gt_labels = np.array(gt_labels, dtype=np.long)
    points = LiDARPoints(points, points_dim=4)
    input_dict = dict(points=points,
                      gt_bboxes_3d=gt_bboxes_3d,
                      gt_labels_3d=gt_labels)
    input_dict = object_sample(input_dict)
    points = input_dict['points']
    gt_bboxes_3d = input_dict['gt_bboxes_3d']
    gt_labels_3d = input_dict['gt_labels_3d']
    repr_str = repr(object_sample)
    expected_repr_str = 'ObjectSample sample_2d=False, ' \
                        'data_root=./tests/data/kitti/, ' \
                        'info_path=./tests/data/kitti/kitti' \
                        '_dbinfos_train.pkl, rate=1.0, ' \
                        'prepare={\'filter_by_difficulty\': [-1], ' \
                        '\'filter_by_min_points\': {\'Pedestrian\': 10}}, ' \
                        'classes=[\'Pedestrian\', \'Cyclist\', \'Car\'], ' \
                        'sample_groups={\'Pedestrian\': 6}'
    assert repr_str == expected_repr_str
    assert points.tensor.numpy().shape == (800, 4)
    assert gt_bboxes_3d.tensor.shape == (1, 7)
    assert np.all(gt_labels_3d == [0])
Пример #6
0
def show_proj_det_result_meshlab(data,
                                 result,
                                 out_dir,
                                 score_thr=0.0,
                                 show=False,
                                 snapshot=False):
    """Show result of projecting 3D bbox to 2D image by meshlab."""
    assert 'img' in data.keys(), 'image data is not provided for visualization'

    img_filename = data['img_metas'][0][0]['filename']
    file_name = osp.split(img_filename)[-1].split('.')[0]

    # read from file because img in data_dict has undergone pipeline transform
    img = mmcv.imread(img_filename)

    if 'pts_bbox' in result[0].keys():
        result[0] = result[0]['pts_bbox']
    elif 'img_bbox' in result[0].keys():
        result[0] = result[0]['img_bbox']
    pred_bboxes = result[0]['boxes_3d'].tensor.numpy()
    pred_scores = result[0]['scores_3d'].numpy()

    # filter out low score bboxes for visualization
    if score_thr > 0:
        inds = pred_scores > score_thr
        pred_bboxes = pred_bboxes[inds]

    box_mode = data['img_metas'][0][0]['box_mode_3d']
    if box_mode == Box3DMode.LIDAR:
        if 'lidar2img' not in data['img_metas'][0][0]:
            raise NotImplementedError(
                'LiDAR to image transformation matrix is not provided')

        show_bboxes = LiDARInstance3DBoxes(pred_bboxes, origin=(0.5, 0.5, 0))

        show_multi_modality_result(img,
                                   None,
                                   show_bboxes,
                                   data['img_metas'][0][0]['lidar2img'],
                                   out_dir,
                                   file_name,
                                   box_mode='lidar',
                                   show=show)
    elif box_mode == Box3DMode.DEPTH:
        show_bboxes = DepthInstance3DBoxes(pred_bboxes, origin=(0.5, 0.5, 0))

        show_multi_modality_result(img,
                                   None,
                                   show_bboxes,
                                   None,
                                   out_dir,
                                   file_name,
                                   box_mode='depth',
                                   img_metas=data['img_metas'][0][0],
                                   show=show)
    elif box_mode == Box3DMode.CAM:
        if 'cam2img' not in data['img_metas'][0][0]:
            raise NotImplementedError(
                'camera intrinsic matrix is not provided')

        show_bboxes = CameraInstance3DBoxes(pred_bboxes,
                                            box_dim=pred_bboxes.shape[-1],
                                            origin=(0.5, 1.0, 0.5))

        show_multi_modality_result(img,
                                   None,
                                   show_bboxes,
                                   data['img_metas'][0][0]['cam2img'],
                                   out_dir,
                                   file_name,
                                   box_mode='camera',
                                   show=show)
    else:
        raise NotImplementedError(
            f'visualization of {box_mode} bbox is not supported')

    return file_name