def __init__(self, model): super(Keras2Parser, self).__init__() # load model files into Keras graph if isinstance(model, _string_types): model = _keras.models.load_model( model, custom_objects={ 'relu6': _keras.applications.mobilenet.relu6, 'DepthwiseConv2D': _keras.applications.mobilenet.DepthwiseConv2D }) self.weight_loaded = True elif isinstance(model, tuple): model = self._load_model(model[0], model[1]) else: assert False # _keras.utils.plot_model(model, "model.png", show_shapes = True) # Build network graph self.data_format = _keras.backend.image_data_format() self.keras_graph = Keras2Graph(model) self.keras_graph.build() self.lambda_layer_count = 0
def __init__(self, model): super(Keras2Parser, self).__init__() # load model files into Keras graph if isinstance(model, _string_types): # try: # # Keras 2.1.6 # from keras.applications.mobilenet import relu6 # from keras.applications.mobilenet import DepthwiseConv2D # model = _keras.models.load_model( # model, # custom_objects={ # 'relu6': _keras.applications.mobilenet.relu6, # 'DepthwiseConv2D': _keras.applications.mobilenet.DepthwiseConv2D # } # ) # except: # Keras. 2.2.2 import tensorflow.keras.layers as layers from tensorflow.keras.initializers import VarianceScaling from mmdnn.conversion.keras.metrics import F1Score model = _keras.models.load_model(model, custom_objects={ 'relu6': layers.ReLU(6, name='relu6'), 'DepthwiseConv2D': layers.DepthwiseConv2D, 'AudioVarianceScaling': VarianceScaling, 'F1Score': F1Score }) self.weight_loaded = True elif isinstance(model, tuple): model = self._load_model(model[0], model[1]) else: assert False # _keras.utils.plot_model(model, "model.png", show_shapes = True) # Build network graph self.data_format = _keras.backend.image_data_format() self.keras_graph = Keras2Graph(model) self.keras_graph.build() self.lambda_layer_count = 0
def __init__(self, model): super(Keras2Parser, self).__init__() # load model files into Keras graph if isinstance(model, _string_types): model = _keras.models.load_model(model) elif isinstance(model, tuple): model = self._load_model(model[0], model[1]) else: assert False # _keras.utils.plot_model(model, "model.png", show_shapes = True) # Build network graph self.data_format = _keras.backend.image_data_format() self.keras_graph = Keras2Graph(model) self.keras_graph.build()