Пример #1
0
    def __init__(self,
                 num_images,
                 image_shape=None,
                 inception_pkl=None,
                 bgr2rgb=True,
                 inception_args=dict(normalize_input=False)):
        super().__init__(num_images, image_shape=image_shape)
        self.inception_pkl = inception_pkl
        self.real_feats = []
        self.fake_feats = []
        self.real_mean = None
        self.real_cov = None
        self.bgr2rgb = bgr2rgb
        self.device = 'cpu'

        # define inception network as official StyleGAN
        if inception_args.get('type', None) == 'StyleGAN':
            self.inception_net = torch.jit.load(
                inception_args['inception_path'])
            self.inception_style = 'StyleGAN'
        else:
            self.inception_style = 'PyTorch'
            # define inception net with default PyTorch style
            self.inception_net = InceptionV3([3], **inception_args)
        if torch.cuda.is_available():
            self.inception_net = self.inception_net.cuda()
            self.device = 'cuda'
        self.inception_net.eval()

        mmcv.print_log(f'FID: Adopt Inception in {self.inception_style} style',
                       'mmgen')
Пример #2
0
    def test_fid_inception(self):
        inception = InceptionV3(load_fid_inception=self.load_fid_inception)
        imgs = torch.randn((2, 3, 256, 256))
        out = inception(imgs)[0]
        assert out.shape == (2, 2048, 1, 1)

        imgs = torch.randn((2, 3, 512, 512))
        out = inception(imgs)[0]
        assert out.shape == (2, 2048, 1, 1)
Пример #3
0
    def test_with_tero_implement(self):
        self.inception = InceptionV3(load_fid_inception=True,
                                     resize_input=False)
        img = torch.randn((2, 3, 1024, 1024))
        feature_ours = self.inception(img)[0].view(img.shape[0], -1)

        # Tero implementation
        net = torch.jit.load(
            './work_dirs/cache/inception-2015-12-05.pt').eval().cuda()
        net = torch.nn.DataParallel(net)
        feature_tero = net(img, return_features=True)

        print(feature_ours.shape)

        print((feature_tero.cpu() - feature_ours).abs().mean())
Пример #4
0
 def setup_class(cls):
     cls.inception = InceptionV3(load_fid_inception=False,
                                 resize_input=True)
     pipeline = [
         dict(type='LoadImageFromFile', key='real_img'),
         dict(
             type='Resize',
             keys=['real_img'],
             scale=(299, 299),
             keep_ratio=False,
         ),
         dict(type='Normalize',
              keys=['real_img'],
              mean=[127.5] * 3,
              std=[127.5] * 3,
              to_rgb=False),
         dict(type='Collect', keys=['real_img'], meta_keys=[]),
         dict(type='ImageToTensor', keys=['real_img'])
     ]
     dataset = UnconditionalImageDataset(
         osp.join(osp.dirname(__file__), '..', 'data'), pipeline)
     cls.data_loader = build_dataloader(dataset, 3, 0, dist=False)
Пример #5
0
    data_loader = build_dataloader(dataset,
                                   args.batch_size,
                                   4,
                                   dist=False,
                                   shuffle=(not args.no_shuffle))

    mmcv.mkdir_or_exist(args.pkl_dir)

    # build inception network
    if args.inception_style == 'stylegan':
        inception = torch.jit.load(args.inception_pth).eval().cuda()
        inception = nn.DataParallel(inception)
        print_log('Adopt Inception network in StyleGAN', 'mmgen')
    else:
        inception = nn.DataParallel(
            InceptionV3([3], resize_input=True, normalize_input=False).cuda())
        inception.eval()

    if args.num_samples == -1:
        print_log('Use all samples in subset', 'mmgen')
        num_samples = len(dataset)
    else:
        num_samples = args.num_samples

    features = extract_inception_features(data_loader, inception, num_samples,
                                          args.inception_style).numpy()

    # sanity check for the number of features
    assert features.shape[
        0] == num_samples, 'the number of features != num_samples'
    print_log(f'Extract {num_samples} features', 'mmgen')