def __init__(self, encoder=dict(type='TransformerEncoder'), decoder=dict(type='ABIVisionDecoder'), init_cfg=dict(type='Xavier', layer='Conv2d'), **kwargs): super().__init__(init_cfg=init_cfg) self.encoder = build_encoder(encoder) self.decoder = build_decoder(decoder)
def __init__(self, preprocessor=None, backbone=None, encoder=None, decoder=None, loss=None, label_convertor=None, train_cfg=None, test_cfg=None, max_seq_len=40, pretrained=None, init_cfg=None): super().__init__(init_cfg=init_cfg) # Label convertor (str2tensor, tensor2str) assert label_convertor is not None label_convertor.update(max_seq_len=max_seq_len) self.label_convertor = build_convertor(label_convertor) # Preprocessor module, e.g., TPS self.preprocessor = None if preprocessor is not None: self.preprocessor = build_preprocessor(preprocessor) # Backbone assert backbone is not None self.backbone = build_backbone(backbone) # Encoder module self.encoder = None if encoder is not None: self.encoder = build_encoder(encoder) # Decoder module assert decoder is not None decoder.update(num_classes=self.label_convertor.num_classes()) decoder.update(start_idx=self.label_convertor.start_idx) decoder.update(padding_idx=self.label_convertor.padding_idx) decoder.update(max_seq_len=max_seq_len) self.decoder = build_decoder(decoder) # Loss assert loss is not None loss.update(ignore_index=self.label_convertor.padding_idx) self.loss = build_loss(loss) self.train_cfg = train_cfg self.test_cfg = test_cfg self.max_seq_len = max_seq_len if pretrained is not None: warnings.warn('DeprecationWarning: pretrained is a deprecated \ key, please consider using init_cfg') self.init_cfg = dict(type='Pretrained', checkpoint=pretrained)
def __init__(self, preprocessor=None, backbone=None, encoder=None, decoder=None, loss=None, label_convertor=None, train_cfg=None, test_cfg=None, max_seq_len=40, pretrained=None): super().__init__() # Label convertor (str2tensor, tensor2str) assert label_convertor is not None label_convertor.update(max_seq_len=max_seq_len) self.label_convertor = build_convertor(label_convertor) # Preprocessor module, e.g., TPS self.preprocessor = None if preprocessor is not None: self.preprocessor = build_preprocessor(preprocessor) # Backbone assert backbone is not None self.backbone = build_backbone(backbone) # Encoder module self.encoder = None if encoder is not None: self.encoder = build_encoder(encoder) # Decoder module assert decoder is not None decoder.update(num_classes=self.label_convertor.num_classes()) decoder.update(start_idx=self.label_convertor.start_idx) decoder.update(padding_idx=self.label_convertor.padding_idx) decoder.update(max_seq_len=max_seq_len) self.decoder = build_decoder(decoder) # Loss assert loss is not None loss.update(ignore_index=self.label_convertor.padding_idx) self.loss = build_loss(loss) self.train_cfg = train_cfg self.test_cfg = test_cfg self.max_seq_len = max_seq_len self.init_weights(pretrained=pretrained)
def __init__(self, encoder, decoder, loss, label_convertor, train_cfg=None, test_cfg=None, init_cfg=None): super().__init__(init_cfg=init_cfg) self.label_convertor = build_convertor(label_convertor) self.encoder = build_encoder(encoder) decoder.update(num_labels=self.label_convertor.num_labels) self.decoder = build_decoder(decoder) loss.update(num_labels=self.label_convertor.num_labels) self.loss = build_loss(loss)