def main(): args = parse_args() if args.root_work_dir is None: # get the current time stamp now = datetime.now() ts = now.strftime('%Y_%m_%d_%H_%M') args.root_work_dir = f'work_dirs/flops_test_{ts}' mmcv.mkdir_or_exist(osp.abspath(args.root_work_dir)) cfg = mmcv.load(args.config) results = [] for i in range(args.priority + 1): models = cfg['model_list'][f'P{i}'] for cur_model in models: cfg_file = cur_model['config'] model_cfg = Config.fromfile(cfg_file) if 'input_shape' in cur_model.keys(): input_shape = cur_model['input_shape'] input_shape = tuple(map(int, input_shape.split(','))) else: image_size = model_cfg.data_cfg.image_size if isinstance(image_size, list): input_shape = (3, ) + tuple(image_size) else: input_shape = (3, image_size, image_size) model = init_pose_model(cfg_file) if hasattr(model, 'forward_dummy'): model.forward = model.forward_dummy else: raise NotImplementedError( 'FLOPs counter is currently not currently supported ' 'with {}'.format(model.__class__.__name__)) flops, params = get_model_complexity_info( model, input_shape, print_per_layer_stat=False) split_line = '=' * 30 result = f'{split_line}\nModel config:{cfg_file}\n' \ f'Input shape: {input_shape}\n' \ f'Flops: {flops}\nParams: {params}\n{split_line}\n' print(result) results.append(result) print('!!!Please be cautious if you use the results in papers. ' 'You may need to check if all ops are supported and verify that the ' 'flops computation is correct.') with open(osp.join(args.root_work_dir, 'flops.txt'), 'w') as f: for res in results: f.write(res)
def main(): args = parse_args() if len(args.shape) == 1: input_shape = (3, args.shape[0], args.shape[0]) elif len(args.shape) == 2: input_shape = (3, ) + tuple(args.shape) else: raise ValueError('invalid input shape') model = init_pose_model(args.config) if args.input_constructor == 'batch': input_constructor = partial(batch_constructor, model, args.batch_size) else: input_constructor = None if args.input_constructor == 'batch': input_constructor = partial(batch_constructor, model, args.batch_size) else: input_constructor = None if hasattr(model, 'forward_dummy'): model.forward = model.forward_dummy else: raise NotImplementedError( 'FLOPs counter is currently not currently supported with {}'. format(model.__class__.__name__)) flops, params = get_model_complexity_info( model, input_shape, input_constructor=input_constructor, print_per_layer_stat=(not args.not_print_per_layer_stat)) split_line = '=' * 30 input_shape = (args.batch_size, ) + input_shape print(f'{split_line}\nInput shape: {input_shape}\n' f'Flops: {flops}\nParams: {params}\n{split_line}') print('!!!Please be cautious if you use the results in papers. ' 'You may need to check if all ops are supported and verify that the ' 'flops computation is correct.')
def main(): parser = ArgumentParser() parser.add_argument('pose_lifter_config', help='Config file for the 2nd stage pose lifter model') parser.add_argument( 'pose_lifter_checkpoint', help='Checkpoint file for the 2nd stage pose lifter model') parser.add_argument('--pose-detector-conifig', type=str, default=None, help='Config file for the 1st stage 2D pose detector') parser.add_argument( '--pose-detector-checkpoint', type=str, default=None, help='Checkpoint file for the 1st stage 2D pose detector') parser.add_argument('--img-root', type=str, default='', help='Image root') parser.add_argument( '--json-file', type=str, default=None, help='Json file containing image and bbox inforamtion. Optionally,' 'The Jons file can also contain 2D pose information. See' '"only-second-stage"') parser.add_argument( '--camera-param-file', type=str, default=None, help='Camera parameter file for converting 3D pose predictions from ' ' the camera space to to world space. If None, no conversion will be ' 'applied.') parser.add_argument( '--only-second-stage', action='store_true', help='If true, load 2D pose detection result from the Json file and ' 'skip the 1st stage. The pose detection model will be ignored.') parser.add_argument( '--rebase-keypoint-height', action='store_true', help='Rebase the predicted 3D pose so its lowest keypoint has a ' 'height of 0 (landing on the ground). This is useful for ' 'visualization when the model do not predict the global position ' 'of the 3D pose.') parser.add_argument( '--show-ground-truth', action='store_true', help='If True, show ground truth if it is available. The ground truth ' 'should be contained in the annotations in the Json file with the key ' '"keypoints_3d" for each instance.') parser.add_argument('--show', action='store_true', default=False, help='whether to show img') parser.add_argument('--out-img-root', type=str, default=None, help='Root of the output visualization images. ' 'Default not saving the visualization images.') parser.add_argument('--device', default='cuda:0', help='Device for inference') parser.add_argument('--kpt-thr', type=float, default=0.3) parser.add_argument('--radius', type=int, default=4, help='Keypoint radius for visualization') parser.add_argument('--thickness', type=int, default=1, help='Link thickness for visualization') args = parser.parse_args() assert args.show or (args.out_img_root != '') coco = COCO(args.json_file) # First stage: 2D pose detection pose_det_results_list = [] if args.only_second_stage: from mmpose.apis.inference import _xywh2xyxy print('Stage 1: load 2D pose results from Json file.') for image_id, image in coco.imgs.items(): image_name = osp.join(args.img_root, image['file_name']) ann_ids = coco.getAnnIds(image_id) pose_det_results = [] for ann_id in ann_ids: ann = coco.anns[ann_id] keypoints = np.array(ann['keypoints']).reshape(-1, 3) keypoints[..., 2] = keypoints[..., 2] >= 1 keypoints_3d = np.array(ann['keypoints_3d']).reshape(-1, 4) keypoints_3d[..., 3] = keypoints_3d[..., 3] >= 1 bbox = np.array(ann['bbox']).reshape(1, -1) pose_det_result = { 'image_name': image_name, 'bbox': _xywh2xyxy(bbox), 'keypoints': keypoints, 'keypoints_3d': keypoints_3d } pose_det_results.append(pose_det_result) pose_det_results_list.append(pose_det_results) else: print('Stage 1: 2D pose detection.') pose_det_model = init_pose_model(args.pose_detector_config, args.pose_detector_checkpoint, device=args.device.lower()) assert pose_det_model.cfg.model.type == 'TopDown', 'Only "TopDown"' \ 'model is supported for the 1st stage (2D pose detection)' dataset = pose_det_model.cfg.data['test']['type'] img_keys = list(coco.imgs.keys()) for i in mmcv.track_iter_progress(range(len(img_keys))): # get bounding box annotations image_id = img_keys[i] image = coco.loadImgs(image_id)[0] image_name = osp.join(args.img_root, image['file_name']) ann_ids = coco.getAnnIds(image_id) # make person results for single image person_results = [] for ann_id in ann_ids: person = {} ann = coco.anns[ann_id] person['bbox'] = ann['bbox'] person_results.append(person) pose_det_results, _ = inference_top_down_pose_model( pose_det_model, image_name, person_results, bbox_thr=None, format='xywh', dataset=dataset, return_heatmap=False, outputs=None) for res in pose_det_results: res['image_name'] = image_name pose_det_results_list.append(pose_det_results) # Second stage: Pose lifting print('Stage 2: 2D-to-3D pose lifting.') pose_lift_model = init_pose_model(args.pose_lifter_config, args.pose_lifter_checkpoint, device=args.device.lower()) assert pose_lift_model.cfg.model.type == 'PoseLifter', 'Only' \ '"PoseLifter" model is supported for the 2nd stage ' \ '(2D-to-3D lifting)' dataset = pose_lift_model.cfg.data['test']['type'] camera_params = None if args.camera_param_file is not None: camera_params = mmcv.load(args.camera_param_file) for i, pose_det_results in enumerate( mmcv.track_iter_progress(pose_det_results_list)): # 2D-to-3D pose lifting # Note that the pose_det_results are regarded as a single-frame pose # sequence pose_lift_results = inference_pose_lifter_model( pose_lift_model, pose_results_2d=[pose_det_results], dataset=dataset, with_track_id=False) image_name = pose_det_results[0]['image_name'] # Pose processing pose_lift_results_vis = [] for idx, res in enumerate(pose_lift_results): keypoints_3d = res['keypoints_3d'] # project to world space if camera_params is not None: keypoints_3d = _keypoint_camera_to_world( keypoints_3d, camera_params=camera_params, image_name=image_name, dataset=dataset) # rebase height (z-axis) if args.rebase_keypoint_height: keypoints_3d[..., 2] -= np.min(keypoints_3d[..., 2], axis=-1, keepdims=True) res['keypoints_3d'] = keypoints_3d # Add title det_res = pose_det_results[idx] instance_id = det_res.get('track_id', idx) res['title'] = f'Prediction ({instance_id})' pose_lift_results_vis.append(res) # Add ground truth if args.show_ground_truth: if 'keypoints_3d' not in det_res: print('Fail to show ground truth. Please make sure that' ' the instance annotations from the Json file' ' contain "keypoints_3d".') else: gt = res.copy() gt['keypoints_3d'] = det_res['keypoints_3d'] gt['title'] = f'Ground truth ({instance_id})' pose_lift_results_vis.append(gt) # Visualization if args.out_img_root is None: out_file = None else: os.makedirs(args.out_img_root, exist_ok=True) out_file = osp.join(args.out_img_root, f'vis_{i}.jpg') vis_3d_pose_result(pose_lift_model, result=pose_lift_results_vis, img=pose_lift_results[0]['image_name'], out_file=out_file)
def main(): args = parse_args() if 'cuda' in args.device.lower(): if torch.cuda.is_available(): with_cuda = True else: raise RuntimeError('No CUDA device found, please check it again.') else: with_cuda = False if args.root_work_dir is None: # get the current time stamp now = datetime.now() ts = now.strftime('%Y_%m_%d_%H_%M') args.root_work_dir = f'work_dirs/inference_speed_test_{ts}' mmcv.mkdir_or_exist(osp.abspath(args.root_work_dir)) cfg = mmcv.load(args.config) dummy_datasets = mmcv.load(args.dummy_dataset_config)['dummy_datasets'] results = [] for i in range(args.priority + 1): models = cfg['model_list'][f'P{i}'] for cur_model in models: cfg_file = cur_model['config'] model_cfg = Config.fromfile(cfg_file) test_dataset = model_cfg['data']['test'] dummy_dataset = dummy_datasets[test_dataset['type']] test_dataset.update(dummy_dataset) dataset = build_dataset(test_dataset) data_loader = build_dataloader( dataset, samples_per_gpu=args.batch_size, workers_per_gpu=model_cfg.data.workers_per_gpu, dist=False, shuffle=False) data_loader = IterLoader(data_loader) if 'pretrained' in model_cfg.model.keys(): del model_cfg.model['pretrained'] model = init_pose_model(model_cfg, device=args.device.lower()) fp16_cfg = model_cfg.get('fp16', None) if fp16_cfg is not None: wrap_fp16_model(model) if args.fuse_conv_bn: model = fuse_conv_bn(model) # benchmark with several iterations and take the average pure_inf_time = 0 speed = [] for iteration in range(args.num_iters + args.num_warmup): data = next(data_loader) data['img'] = data['img'].to(args.device.lower()) data['img_metas'] = data['img_metas'].data[0] if with_cuda: torch.cuda.synchronize() start_time = time.perf_counter() with torch.no_grad(): model(return_loss=False, **data) if with_cuda: torch.cuda.synchronize() elapsed = time.perf_counter() - start_time if iteration >= args.num_warmup: pure_inf_time += elapsed speed.append(1 / elapsed) speed_mean = np.mean(speed) speed_std = np.std(speed) split_line = '=' * 30 result = f'{split_line}\nModel config:{cfg_file}\n' \ f'Device: {args.device}\n' \ f'Batch size: {args.batch_size}\n' \ f'Overall average speed: {speed_mean:.2f} \u00B1 ' \ f'{speed_std:.2f} items / s\n' \ f'Total iters: {args.num_iters}\n'\ f'Total time: {pure_inf_time:.2f} s \n{split_line}\n'\ print(result) results.append(result) print('!!!Please be cautious if you use the results in papers. ' 'You may need to check if all ops are included and verify that the ' 'speed computation is correct.') with open(osp.join(args.root_work_dir, 'inference_speed.txt'), 'w') as f: for res in results: f.write(res)
def main(): parser = ArgumentParser() parser.add_argument('pose_config', help='Config file for pose network') parser.add_argument('pose_checkpoint', help='Checkpoint file') parser.add_argument('--img-root', type=str, default='', help='Image root') parser.add_argument('--json-file', type=str, default='', help='Json file containing image info.') parser.add_argument( '--camera-param-file', type=str, default=None, help='Camera parameter file for converting 3D pose predictions from ' ' the pixel space to camera space. If None, keypoints in pixel space' 'will be visualized') parser.add_argument( '--gt-joints-file', type=str, default=None, help='Optional arguement. Ground truth 3D keypoint parameter file. ' 'If None, gt keypoints will not be shown and keypoints in pixel ' 'space will be visualized.') parser.add_argument( '--rebase-keypoint-height', action='store_true', help='Rebase the predicted 3D pose so its lowest keypoint has a ' 'height of 0 (landing on the ground). This is useful for ' 'visualization when the model do not predict the global position ' 'of the 3D pose.') parser.add_argument( '--show-ground-truth', action='store_true', help='If True, show ground truth keypoint if it is available.') parser.add_argument('--show', action='store_true', default=False, help='whether to show img') parser.add_argument('--out-img-root', type=str, default=None, help='Root of the output visualization images. ' 'Default not saving the visualization images.') parser.add_argument('--device', default='cuda:0', help='Device for inference') parser.add_argument('--kpt-thr', type=float, default=0.3, help='Keypoint score threshold') parser.add_argument('--radius', type=int, default=4, help='Keypoint radius for visualization') parser.add_argument('--thickness', type=int, default=1, help='Link thickness for visualization') args = parser.parse_args() assert args.show or (args.out_img_root != '') coco = COCO(args.json_file) # build the pose model from a config file and a checkpoint file pose_model = init_pose_model(args.pose_config, args.pose_checkpoint, device=args.device.lower()) dataset = pose_model.cfg.data['test']['type'] # load camera parameters camera_params = None if args.camera_param_file is not None: camera_params = mmcv.load(args.camera_param_file) # load ground truth joints parameters gt_joint_params = None if args.gt_joints_file is not None: gt_joint_params = mmcv.load(args.gt_joints_file) # load hand bounding boxes det_results_list = [] for image_id, image in coco.imgs.items(): image_name = osp.join(args.img_root, image['file_name']) ann_ids = coco.getAnnIds(image_id) det_results = [] capture_key = str(image['capture']) camera_key = image['camera'] frame_idx = image['frame_idx'] for ann_id in ann_ids: ann = coco.anns[ann_id] if camera_params is not None: camera_param = { key: camera_params[capture_key][key][camera_key] for key in camera_params[capture_key].keys() } camera_param = _transform_interhand_camera_param(camera_param) else: camera_param = None if gt_joint_params is not None: joint_param = gt_joint_params[capture_key][str(frame_idx)] gt_joint = np.concatenate([ np.array(joint_param['world_coord']), np.array(joint_param['joint_valid']) ], axis=-1) else: gt_joint = None det_result = { 'image_name': image_name, 'bbox': ann['bbox'], # bbox format is 'xywh' 'camera_param': camera_param, 'keypoints_3d_gt': gt_joint } det_results.append(det_result) det_results_list.append(det_results) for i, det_results in enumerate( mmcv.track_iter_progress(det_results_list)): image_name = det_results[0]['image_name'] pose_results = inference_interhand_3d_model(pose_model, image_name, det_results, dataset=dataset) # Post processing pose_results_vis = [] for idx, res in enumerate(pose_results): keypoints_3d = res['keypoints_3d'] # normalize kpt score if keypoints_3d[:, 3].max() > 1: keypoints_3d[:, 3] /= 255 # get 2D keypoints in pixel space res['keypoints'] = keypoints_3d[:, [0, 1, 3]] # For model-predicted keypoints, channel 0 and 1 are coordinates # in pixel space, and channel 2 is the depth (in mm) relative # to root joints. # If both camera parameter and absolute depth of root joints are # provided, we can transform keypoint to camera space for better # visualization. camera_param = res['camera_param'] keypoints_3d_gt = res['keypoints_3d_gt'] if camera_param is not None and keypoints_3d_gt is not None: # build camera model camera = SimpleCamera(camera_param) # transform gt joints from world space to camera space keypoints_3d_gt[:, :3] = camera.world_to_camera( keypoints_3d_gt[:, :3]) # transform relative depth to absolute depth keypoints_3d[:21, 2] += keypoints_3d_gt[20, 2] keypoints_3d[21:, 2] += keypoints_3d_gt[41, 2] # transform keypoints from pixel space to camera space keypoints_3d[:, :3] = camera.pixel_to_camera( keypoints_3d[:, :3]) # rotate the keypoint to make z-axis correspondent to height # for better visualization vis_R = np.array([[1, 0, 0], [0, 0, -1], [0, 1, 0]]) keypoints_3d[:, :3] = keypoints_3d[:, :3] @ vis_R if keypoints_3d_gt is not None: keypoints_3d_gt[:, :3] = keypoints_3d_gt[:, :3] @ vis_R # rebase height (z-axis) if args.rebase_keypoint_height: valid = keypoints_3d[..., 3] > 0 keypoints_3d[..., 2] -= np.min(keypoints_3d[valid, 2], axis=-1, keepdims=True) res['keypoints_3d'] = keypoints_3d res['keypoints_3d_gt'] = keypoints_3d_gt # Add title instance_id = res.get('track_id', idx) res['title'] = f'Prediction ({instance_id})' pose_results_vis.append(res) # Add ground truth if args.show_ground_truth: if keypoints_3d_gt is None: print('Fail to show ground truth. Please make sure that' ' gt-joints-file is provided.') else: gt = res.copy() if args.rebase_keypoint_height: valid = keypoints_3d_gt[..., 3] > 0 keypoints_3d_gt[..., 2] -= np.min(keypoints_3d_gt[valid, 2], axis=-1, keepdims=True) gt['keypoints_3d'] = keypoints_3d_gt gt['title'] = f'Ground truth ({instance_id})' pose_results_vis.append(gt) # Visualization if args.out_img_root is None: out_file = None else: os.makedirs(args.out_img_root, exist_ok=True) out_file = osp.join(args.out_img_root, f'vis_{i}.jpg') vis_3d_pose_result( pose_model, result=pose_results_vis, img=det_results[0]['image_name'], out_file=out_file, dataset=dataset, show=args.show, kpt_score_thr=args.kpt_thr, radius=args.radius, thickness=args.thickness, )