Пример #1
0
def test_imshow_keypoints():
    # 2D keypoint
    img = np.zeros((100, 100, 3), dtype=np.uint8)
    kpts = np.array([[1, 1, 1], [10, 10, 1]], dtype=np.float32)
    pose_result = [kpts]
    skeleton = [[0, 1]]
    pose_kpt_color = [(127, 127, 127)] * len(kpts)
    pose_link_color = [(127, 127, 127)] * len(skeleton)
    img_vis_2d = imshow_keypoints(
        img,
        pose_result,
        skeleton=skeleton,
        pose_kpt_color=pose_kpt_color,
        pose_link_color=pose_link_color,
        show_keypoint_weight=True)

    # 3D keypoint
    kpts_3d = np.array([[0, 0, 0, 1], [1, 1, 1, 1]], dtype=np.float32)
    pose_result_3d = [{'keypoints_3d': kpts_3d, 'title': 'test'}]
    _ = imshow_keypoints_3d(
        pose_result_3d,
        img=img_vis_2d,
        skeleton=skeleton,
        pose_kpt_color=pose_kpt_color,
        pose_link_color=pose_link_color,
        vis_height=400)
Пример #2
0
def test_imshow_keypoints_3d():
    img = np.zeros((100, 100, 3), dtype=np.uint8)
    kpts_3d = np.array([[0, 0, 0, 1], [1, 1, 1, 1]], dtype=np.float32)
    pose_result_3d = [{'keypoints_3d': kpts_3d, 'title': 'test'}]
    skeleton = [[0, 1]]
    pose_kpt_color = [(127, 127, 127)] * len(kpts_3d)
    pose_link_color = [(127, 127, 127)] * len(skeleton)
    _ = imshow_keypoints_3d(pose_result_3d,
                            img=img,
                            skeleton=skeleton,
                            pose_kpt_color=pose_kpt_color,
                            pose_link_color=pose_link_color,
                            vis_height=400)

    # multiview 3D keypoint
    pose_result_3d = [kpts_3d]
    _ = imshow_multiview_keypoints_3d(pose_result_3d,
                                      skeleton=skeleton,
                                      pose_kpt_color=pose_kpt_color,
                                      pose_link_color=pose_link_color,
                                      space_size=[8, 8, 8],
                                      space_center=[0, 0, 0],
                                      kpt_score_thr=0.0)
Пример #3
0
    def show_result(self,
                    result,
                    img=None,
                    skeleton=None,
                    pose_kpt_color=None,
                    pose_link_color=None,
                    radius=8,
                    thickness=2,
                    vis_height=400,
                    num_instances=-1,
                    axis_azimuth=70,
                    win_name='',
                    show=False,
                    wait_time=0,
                    out_file=None):
        """Visualize 3D pose estimation results.

        Args:
            result (list[dict]): The pose estimation results containing:

                - "keypoints_3d" ([K,4]): 3D keypoints
                - "keypoints" ([K,3] or [T,K,3]): Optional for visualizing
                    2D inputs. If a sequence is given, only the last frame
                    will be used for visualization
                - "bbox" ([4,] or [T,4]): Optional for visualizing 2D inputs
                - "title" (str): title for the subplot
            img (str or Tensor): Optional. The image to visualize 2D inputs on.
            skeleton (list of [idx_i,idx_j]): Skeleton described by a list of
                links, each is a pair of joint indices.
            pose_kpt_color (np.array[Nx3]`): Color of N keypoints.
                If None, do not draw keypoints.
            pose_link_color (np.array[Mx3]): Color of M links.
                If None, do not draw links.
            radius (int): Radius of circles.
            thickness (int): Thickness of lines.
            vis_height (int): The image height of the visualization. The width
                will be N*vis_height depending on the number of visualized
                items.
            num_instances (int): Number of instances to be shown in 3D. If
                smaller than 0, all the instances in the result will be shown.
                Otherwise, pad or truncate the result to a length of
                num_instances.
            axis_azimuth (float): axis azimuth angle for 3D visualizations.
            win_name (str): The window name.
            show (bool): Whether to directly show the visualization.
            wait_time (int): Value of waitKey param.
                Default: 0.
            out_file (str or None): The filename to write the image.
                Default: None.

        Returns:
            Tensor: Visualized img, only if not `show` or `out_file`.
        """
        if num_instances < 0:
            assert len(result) > 0
        result = sorted(result, key=lambda x: x.get('track_id', 1e4))

        # draw image and input 2d poses
        if img is not None:
            img = mmcv.imread(img)

            bbox_result = []
            pose_input_2d = []
            for res in result:
                if 'bbox' in res:
                    bbox = np.array(res['bbox'])
                    if bbox.ndim != 1:
                        assert bbox.ndim == 2
                        bbox = bbox[-1]  # Get bbox from the last frame
                    bbox_result.append(bbox)
                if 'keypoints' in res:
                    kpts = np.array(res['keypoints'])
                    if kpts.ndim != 2:
                        assert kpts.ndim == 3
                        kpts = kpts[-1]  # Get 2D keypoints from the last frame
                    pose_input_2d.append(kpts)

            if len(bbox_result) > 0:
                bboxes = np.vstack(bbox_result)
                imshow_bboxes(
                    img,
                    bboxes,
                    colors='green',
                    thickness=thickness,
                    show=False)
            if len(pose_input_2d) > 0:
                imshow_keypoints(
                    img,
                    pose_input_2d,
                    skeleton,
                    kpt_score_thr=0.3,
                    pose_kpt_color=pose_kpt_color,
                    pose_link_color=pose_link_color,
                    radius=radius,
                    thickness=thickness)
            img = mmcv.imrescale(img, scale=vis_height / img.shape[0])

        img_vis = imshow_keypoints_3d(
            result,
            img,
            skeleton,
            pose_kpt_color,
            pose_link_color,
            vis_height,
            num_instances=num_instances,
            axis_azimuth=axis_azimuth,
        )

        if show:
            mmcv.visualization.imshow(img_vis, win_name, wait_time)

        if out_file is not None:
            mmcv.imwrite(img_vis, out_file)

        return img_vis