Пример #1
0
    def handle_connection(self, cl_socket):
        """
        Handle socket connection.

        :param cl_socket:
        :return:
        """
        service = None
        while True:
            cmd, msg = retrieve_msg(cl_socket)
            if cmd == b'I':
                resp = service.predict(msg)
                cl_socket.send(resp)
            elif cmd == b'L':
                service, result, code = self.load_model(msg)
                resp = bytearray()
                resp += create_load_model_response(code, result)
                cl_socket.send(resp)
                if code != 200:
                    raise RuntimeError("{} - {}".format(code, result))
            else:
                raise ValueError("Received unknown command: {}".format(cmd))

            if service is not None and service.context is not None and service.context.metrics is not None:
                emit_metrics(service.context.metrics.store)
Пример #2
0
    def handle_connection(self, cl_socket):
        """
        Handle socket connection.

        :param cl_socket:
        :return:
        """
        logging.basicConfig(stream=sys.stdout,
                            format="%(message)s",
                            level=logging.INFO)
        cl_socket.setblocking(True)
        while True:
            cmd, msg = retrieve_msg(cl_socket)
            if cmd == b'I':
                resp = self.service.predict(msg)
                cl_socket.send(resp)
            elif cmd == b'L':
                result, code = self.load_model(msg)
                resp = bytearray()
                resp += create_load_model_response(code, result)
                cl_socket.send(resp)
                self._remap_io()
                if code != 200:
                    raise RuntimeError("{} - {}".format(code, result))
            else:
                raise ValueError("Received unknown command: {}".format(cmd))

            if self.service is not None and self.service.context is not None \
               and self.service.context.metrics is not None:
                emit_metrics(self.service.context.metrics.store)
Пример #3
0
    def load(self, model_name, model_dir, handler, gpu_id, batch_size):
        """
        Load MMS 1.0 model from file.

        :param model_name:
        :param model_dir:
        :param handler:
        :param gpu_id:
        :param batch_size:
        :return:
        """
        logging.debug("Loading model - working dir: %s", os.getcwd())

        # TODO: Request ID is not given. UUID is a temp UUID.
        metrics = MetricsStore(uuid.uuid4(), model_name)
        manifest_file = os.path.join(model_dir, "MAR-INF/MANIFEST.json")
        manifest = None
        if os.path.exists(manifest_file):
            with open(manifest_file) as f:
                manifest = json.load(f)

        temp = handler.split(":", 1)
        module_name = temp[0]
        function_name = None if len(temp) == 1 else temp[1]
        if module_name.endswith(".py"):
            module_name = module_name[:-3]

        module = importlib.import_module(module_name)
        if module is None:
            raise ValueError("Unable to load module {}, make sure it is added to python path".format(module_name))
        if function_name is None:
            function_name = "handle"
        if hasattr(module, function_name):
            entry_point = getattr(module, function_name)
            service = Service(model_name, model_dir, manifest, entry_point, gpu_id, batch_size)

            service.context.metrics = metrics
            # initialize model at load time
            entry_point(None, service.context)
        else:
            model_class_definitions = ModelLoader.list_model_services(module)
            if len(model_class_definitions) != 1:
                raise ValueError("Expected only one class in custom service code or a function entry point")

            model_class = model_class_definitions[0]
            model_service = model_class()
            handle = getattr(model_service, "handle")
            if handle is None:
                raise ValueError("Expect handle method in class {}".format(str(model_class)),)

            service = Service(model_name, model_dir, manifest, model_service.handle, gpu_id, batch_size)
            initialize = getattr(model_service, "initialize")
            if initialize is not None:
                # noinspection PyBroadException
                try:
                    model_service.initialize(service.context)
                # pylint: disable=broad-except
                except Exception:
                    sys.exc_clear()

        emit_metrics(metrics.store)
        return service
 def test_emit_metrics(self, caplog):
     caplog.set_level(logging.INFO)
     metrics = {'test_emit_metrics': True}
     emit_metrics(metrics)
     assert "[METRICS]" in caplog.text
def test_metrics(caplog):
    """
    Test if metric classes methods behave as expected
    Also checks global metric service methods
    """
    caplog.set_level(logging.INFO)
    # Create a batch of request ids
    request_ids = {0: 'abcd', 1: "xyz", 2: "qwerty", 3: "hjshfj"}
    all_req_ids = ','.join(request_ids.values())
    model_name = "dummy model"

    # Create a metrics objects
    metrics = MetricsStore(request_ids, model_name)

    # Counter tests
    metrics.add_counter('CorrectCounter', 1, 1)
    test_metric = metrics.cache[get_model_key('CorrectCounter', 'count', 'xyz',
                                              model_name)]
    assert 'CorrectCounter' == test_metric.name
    metrics.add_counter('CorrectCounter', 1, 1)
    metrics.add_counter('CorrectCounter', 1, 3)
    metrics.add_counter('CorrectCounter', 1)
    test_metric = metrics.cache[get_model_key('CorrectCounter', 'count',
                                              all_req_ids, model_name)]
    assert 'CorrectCounter' == test_metric.name
    metrics.add_counter('CorrectCounter', 3)
    test_metric = metrics.cache[get_model_key('CorrectCounter', 'count', 'xyz',
                                              model_name)]
    assert test_metric.value == 2
    test_metric = metrics.cache[get_model_key('CorrectCounter', 'count',
                                              'hjshfj', model_name)]
    assert test_metric.value == 1
    test_metric = metrics.cache[get_model_key('CorrectCounter', 'count',
                                              all_req_ids, model_name)]
    assert test_metric.value == 4
    # Check what is emitted is correct
    emit_metrics(metrics.store)

    assert "hjshfj" in caplog.text
    assert "ModelName:dummy model" in caplog.text

    # Adding other types of metrics
    # Check for time metric
    with pytest.raises(Exception) as e_info:
        metrics.add_time('WrongTime', 20, 1, 'ns')
    assert "the unit for a timed metric should be one of ['ms', 's']" == e_info.value.args[
        0]

    metrics.add_time('CorrectTime', 20, 2, 's')
    metrics.add_time('CorrectTime', 20, 0)
    test_metric = metrics.cache[get_model_key('CorrectTime', 'ms', 'abcd',
                                              model_name)]
    assert test_metric.value == 20
    assert test_metric.unit == 'Milliseconds'
    test_metric = metrics.cache[get_model_key('CorrectTime', 's', 'qwerty',
                                              model_name)]
    assert test_metric.value == 20
    assert test_metric.unit == 'Seconds'
    # Size based metrics
    with pytest.raises(Exception) as e_info:
        metrics.add_size('WrongSize', 20, 1, 'TB')
    assert "The unit for size based metric is one of ['MB','kB', 'GB', 'B']" == e_info.value.args[
        0]

    metrics.add_size('CorrectSize', 200, 0, 'GB')
    metrics.add_size('CorrectSize', 10, 2)
    test_metric = metrics.cache[get_model_key('CorrectSize', 'GB', 'abcd',
                                              model_name)]
    assert test_metric.value == 200
    assert test_metric.unit == 'Gigabytes'
    test_metric = metrics.cache[get_model_key('CorrectSize', 'MB', 'qwerty',
                                              model_name)]
    assert test_metric.value == 10
    assert test_metric.unit == 'Megabytes'

    # Check a percentage metric
    metrics.add_percent('CorrectPercent', 20.0, 3)
    test_metric = metrics.cache[get_model_key('CorrectPercent', 'percent',
                                              'hjshfj', model_name)]
    assert test_metric.value == 20.0
    assert test_metric.unit == 'Percent'

    # Check a error metric
    metrics.add_error('CorrectError', 'Wrong values')
    test_metric = metrics.cache[get_error_key('CorrectError', '')]
    assert test_metric.value == 'Wrong values'
Пример #6
0
 def test_emit_metrics(self, caplog):
     metrics = {'test_emit_metrics': True}
     emit_metrics(metrics)
     assert "[METRICS]" in caplog.text