def test_filters(): """Test low-, band-, high-pass, and band-stop filters plus resampling.""" sfreq = 100 sig_len_secs = 15 a = rng.randn(2, sig_len_secs * sfreq) # let's test our catchers for fl in ['blah', [0, 1], 1000.5, '10ss', '10']: pytest.raises(ValueError, filter_data, a, sfreq, 4, 8, None, fl, 1.0, 1.0, fir_design='firwin') for nj in ['blah', 0.5]: pytest.raises(ValueError, filter_data, a, sfreq, 4, 8, None, 1000, 1.0, 1.0, n_jobs=nj, phase='zero', fir_design='firwin') pytest.raises(ValueError, filter_data, a, sfreq, 4, 8, None, 100, 1., 1., fir_window='foo') pytest.raises(ValueError, filter_data, a, sfreq, 4, 8, None, 10, 1., 1., fir_design='firwin') # too short # > Nyq/2 pytest.raises(ValueError, filter_data, a, sfreq, 4, sfreq / 2., None, 100, 1.0, 1.0, fir_design='firwin') pytest.raises(ValueError, filter_data, a, sfreq, -1, None, None, 100, 1.0, 1.0, fir_design='firwin') # these should work create_filter(None, sfreq, None, None) create_filter(a, sfreq, None, None, fir_design='firwin') create_filter(a, sfreq, None, None, method='iir') # check our short-filter warning: with pytest.warns(RuntimeWarning, match='attenuation'): # Warning for low attenuation filter_data(a, sfreq, 1, 8, filter_length=256, fir_design='firwin2') with pytest.warns(RuntimeWarning, match='Increase filter_length'): # Warning for too short a filter filter_data(a, sfreq, 1, 8, filter_length='0.5s', fir_design='firwin2') # try new default and old default freqs = fftfreq(a.shape[-1], 1. / sfreq) A = np.abs(fft(a)) kwargs = dict(fir_design='firwin') for fl in ['auto', '10s', '5000ms', 1024, 1023]: bp = filter_data(a, sfreq, 4, 8, None, fl, 1.0, 1.0, **kwargs) bs = filter_data(a, sfreq, 8 + 1.0, 4 - 1.0, None, fl, 1.0, 1.0, **kwargs) lp = filter_data(a, sfreq, None, 8, None, fl, 10, 1.0, n_jobs=2, **kwargs) hp = filter_data(lp, sfreq, 4, None, None, fl, 1.0, 10, **kwargs) assert_allclose(hp, bp, rtol=1e-3, atol=1e-3) assert_allclose(bp + bs, a, rtol=1e-3, atol=1e-3) # Sanity check ttenuation mask = (freqs > 5.5) & (freqs < 6.5) assert_allclose(np.mean(np.abs(fft(bp)[:, mask]) / A[:, mask]), 1., atol=0.02) assert_allclose(np.mean(np.abs(fft(bs)[:, mask]) / A[:, mask]), 0., atol=0.2) # now the minimum-phase versions bp = filter_data(a, sfreq, 4, 8, None, fl, 1.0, 1.0, phase='minimum', **kwargs) bs = filter_data(a, sfreq, 8 + 1.0, 4 - 1.0, None, fl, 1.0, 1.0, phase='minimum', **kwargs) assert_allclose(np.mean(np.abs(fft(bp)[:, mask]) / A[:, mask]), 1., atol=0.11) assert_allclose(np.mean(np.abs(fft(bs)[:, mask]) / A[:, mask]), 0., atol=0.3) # and since these are low-passed, downsampling/upsampling should be close n_resamp_ignore = 10 bp_up_dn = resample(resample(bp, 2, 1, n_jobs=2), 1, 2, n_jobs=2) assert_array_almost_equal(bp[n_resamp_ignore:-n_resamp_ignore], bp_up_dn[n_resamp_ignore:-n_resamp_ignore], 2) # note that on systems without CUDA, this line serves as a test for a # graceful fallback to n_jobs=1 bp_up_dn = resample(resample(bp, 2, 1, n_jobs='cuda'), 1, 2, n_jobs='cuda') assert_array_almost_equal(bp[n_resamp_ignore:-n_resamp_ignore], bp_up_dn[n_resamp_ignore:-n_resamp_ignore], 2) # test to make sure our resamling matches scipy's bp_up_dn = sp_resample(sp_resample(bp, 2 * bp.shape[-1], axis=-1, window='boxcar'), bp.shape[-1], window='boxcar', axis=-1) assert_array_almost_equal(bp[n_resamp_ignore:-n_resamp_ignore], bp_up_dn[n_resamp_ignore:-n_resamp_ignore], 2) # make sure we don't alias t = np.array(list(range(sfreq * sig_len_secs))) / float(sfreq) # make sinusoid close to the Nyquist frequency sig = np.sin(2 * np.pi * sfreq / 2.2 * t) # signal should disappear with 2x downsampling sig_gone = resample(sig, 1, 2)[n_resamp_ignore:-n_resamp_ignore] assert_array_almost_equal(np.zeros_like(sig_gone), sig_gone, 2) # let's construct some filters iir_params = dict(ftype='cheby1', gpass=1, gstop=20, output='ba') iir_params = construct_iir_filter(iir_params, 40, 80, 1000, 'low') # this should be a third order filter assert iir_params['a'].size - 1 == 3 assert iir_params['b'].size - 1 == 3 iir_params = dict(ftype='butter', order=4, output='ba') iir_params = construct_iir_filter(iir_params, 40, None, 1000, 'low') assert iir_params['a'].size - 1 == 4 assert iir_params['b'].size - 1 == 4 iir_params = dict(ftype='cheby1', gpass=1, gstop=20) iir_params = construct_iir_filter(iir_params, 40, 80, 1000, 'low') # this should be a third order filter, which requires 2 SOS ((2, 6)) assert iir_params['sos'].shape == (2, 6) iir_params = dict(ftype='butter', order=4, output='sos') iir_params = construct_iir_filter(iir_params, 40, None, 1000, 'low') assert iir_params['sos'].shape == (2, 6) # check that picks work for 3d array with one channel and picks=[0] a = rng.randn(5 * sfreq, 5 * sfreq) b = a[:, None, :] a_filt = filter_data(a, sfreq, 4, 8, None, 400, 2.0, 2.0, fir_design='firwin') b_filt = filter_data(b, sfreq, 4, 8, [0], 400, 2.0, 2.0, fir_design='firwin') assert_array_equal(a_filt[:, None, :], b_filt) # check for n-dimensional case a = rng.randn(2, 2, 2, 2) with pytest.warns(RuntimeWarning, match='longer'): pytest.raises(ValueError, filter_data, a, sfreq, 4, 8, np.array([0, 1]), 100, 1.0, 1.0) # check corner case (#4693) h = create_filter(np.empty(10000), 1000., l_freq=None, h_freq=55., h_trans_bandwidth=0.5, method='fir', phase='zero-double', fir_design='firwin', verbose=True) assert len(h) == 6601
def _my_trans(data): """FFT that adds an additional dimension by repeating result.""" data_t = fft(data) data_t = np.concatenate([data_t[:, :, None], data_t[:, :, None]], axis=2) return data_t, None