Пример #1
0
def load_train_images():
    if not os.path.exists(minist_path + 'training_images.npy'):
        images, labels = mnist_tools.load_train_images()
        np.save(minist_path + 'training_images.npy', images)
        np.save(minist_path + 'training_labels.npy', labels)
    images = np.load(minist_path + 'training_images.npy')
    labels = np.load(minist_path + 'training_labels.npy')
    return images, labels
Пример #2
0
def load_train_images():
    return mnist_tools.load_train_images()
Пример #3
0
def main():
    # load MNIST images
    images, labels = load_train_images()

    # config
    config_energy_model = to_object(params_energy_model["config"])
    config_generative_model = to_object(params_generative_model["config"])

    # settings
    max_epoch = 1000
    n_trains_per_epoch = 1000
    batchsize_positive = 128
    batchsize_negative = 128
    plot_interval = 30

    # seed
    np.random.seed(args.seed)
    if args.gpu_enabled:
        cuda.cupy.random.seed(args.seed)

    # init weightnorm layers
    if config_energy_model.use_weightnorm:
        print "initializing weight normalization layers of the energy model ..."
        x_positive = sample_from_data(images, len(images) // 10)
        ddgm.compute_energy(x_positive)

    if config_generative_model.use_weightnorm:
        print "initializing weight normalization layers of the generative model ..."
        x_negative = ddgm.generate_x(len(images) // 10)

    # training
    progress = Progress()
    for epoch in xrange(1, max_epoch):
        progress.start_epoch(epoch, max_epoch)
        sum_energy_positive = 0
        sum_energy_negative = 0
        sum_loss = 0
        sum_kld = 0

        for t in xrange(n_trains_per_epoch):
            # sample from data distribution
            x_positive = sample_from_data(images, batchsize_positive)
            x_negative = ddgm.generate_x(batchsize_negative)

            # train energy model
            energy_positive = ddgm.compute_energy_sum(x_positive)
            energy_negative = ddgm.compute_energy_sum(x_negative)
            loss = energy_positive - energy_negative
            ddgm.backprop_energy_model(loss)

            # train generative model
            # TODO: KLD must be greater than or equal to 0
            x_negative = ddgm.generate_x(batchsize_negative)
            kld = ddgm.compute_kld_between_generator_and_energy_model(
                x_negative)
            ddgm.backprop_generative_model(kld)

            sum_energy_positive += float(energy_positive.data)
            sum_energy_negative += float(energy_negative.data)
            sum_loss += float(loss.data)
            sum_kld += float(kld.data)
            if t % 10 == 0:
                progress.show(t, n_trains_per_epoch, {})

        progress.show(
            n_trains_per_epoch, n_trains_per_epoch, {
                "x+": sum_energy_positive / n_trains_per_epoch,
                "x-": sum_energy_negative / n_trains_per_epoch,
                "loss": sum_loss / n_trains_per_epoch,
                "kld": sum_kld / n_trains_per_epoch
            })
        ddgm.save(args.model_dir)

        if epoch % plot_interval == 0 or epoch == 1:
            plot(filename="epoch_{}_time_{}min".format(
                epoch, progress.get_total_time()))
Пример #4
0
def load_train_images():
	return mnist_tools.load_train_images()