Пример #1
0
def tf_matmul_infer(node):
    assert (len(node.in_nodes()) == 2)

    shapes = [node.in_node(i).shape.copy() for i in range(2)]
    log.debug('matmul shapes: {}'.format(shapes))
    if any(s is None or len(s) < 2 for s in shapes):
        log.error("MatMul wasn't able to infer shape")
        return

    if node.transpose_a:
        perm = np.array(range(len(node.in_node(0).shape)), dtype=np.int64)
        perm[-1], perm[-2] = perm[-2], perm[-1]
        inv = PermuteAttrs.get_inverse_permutation(perm)
        permutation = PermuteAttrs.Permutation(perm=perm, inv=int64_array(inv))
        PermuteAttrs.set_permutation(node.in_node(0), node, permutation)
        shapes[0] = shapes[0][perm]

    if node.transpose_b:
        perm = np.array(range(len(node.in_node(1).shape)), dtype=np.int64)
        perm[-1], perm[-2] = perm[-2], perm[-1]
        inv = PermuteAttrs.get_inverse_permutation(perm)
        permutation = PermuteAttrs.Permutation(perm=perm, inv=int64_array(inv))
        PermuteAttrs.set_permutation(node.in_node(1), node, permutation)
        shapes[1] = shapes[1][perm]

    if any(shapes[0][:-2] != shapes[1][:-2]) or shapes[0][-1] != shapes[1][-2]:
        log.error(
            "MatMul wasn't able to infer shape because input dimensions are not compatible"
        )
        return

    shape_tuple = (np.array(shapes[0][:-1], dtype=np.int64),
                   np.array([shapes[1][-1]], dtype=np.int64))
    if len(shapes[0]) > 2:
        # TODO Investigate case when MatMul have inputs with not matching output dimensions
        # It looks to be a practical case and if we add outer dimensions of the first argument
        # it will lead to incorrect model sometimes. TF documentation is unclear.
        log.warning(
            'Ignored outer dimensions of input tensor for MatMul node: {}'.
            format(node.name))
        # shape_tuple = (shapes[0][:-2], *shape_tuple)

    log.debug('shape_tuple: {}'.format(shape_tuple))
    node.out_node().shape = np.concatenate(shape_tuple)
    node['channel_dims'] = node.out_node().shape.size - 1
    log.debug('matmul shape: {}'.format(node.out_node().shape))
def reverse_permute(output_shape: np.array, order: np.array):
    """
    Calculates Transpose op input shape based on output shape and permute order.
    :param output_shape: Transpose output shape
    :param order: permute order
    :return: Transpose input shape corresponding to the specified output shape
    """
    return int64_array(output_shape[PermuteAttrs.get_inverse_permutation(order)])