Пример #1
0
    def __init__(self, graph, platform):
        self.__graph = graph
        self.__platform = platform

        self.__fullMapper = RandomPartialMapper(graph, platform, None)
        self.__communicationMapper = ComPartialMapper(graph, platform, self)
        self.__processMapper = ProcPartialMapper(graph, platform, self)
Пример #2
0
    def __init__(
        self,
        graph,
        platform,
        norm_p,
        extra_dimensions=True,
        extra_dimensions_factor=3,
        ignore_channels=True,
        target_distortion=1.1,
        jlt_tries=10,
        verbose=False,
        disable_embedding_test=False,
    ):
        # todo: make sure the correspondence of cores is correct!
        M_matrix, self._arch_nc, self._arch_nc_inv = arch_to_distance_metric(
            platform, heterogeneity=extra_dimensions)
        self._M = FiniteMetricSpace(M_matrix)
        self.graph = graph
        self.platform = platform
        self.extra_dims = extra_dimensions
        self.jlt_tries = jlt_tries
        self.target_distortion = target_distortion
        self.ignore_channels = ignore_channels
        self.verbose = verbose
        if hasattr(platform, "embedding_json"):
            self.embedding_matrix_path = platform.embedding_json
        else:
            self.embedding_matrix_path = None

        if not self.ignore_channels:
            log.warning("Not ignoring channels might lead"
                        " to invalid mappings when approximating.")
        self.extra_dims_factor = extra_dimensions_factor
        self._d = len(graph.processes())
        if self.extra_dims:
            self._split_d = self._d
            self._split_k = len(platform.processors())
            self._d += len(graph.channels())
        self.p = norm_p
        com_mapper = ComFullMapper(graph, platform)
        self.list_mapper = ProcPartialMapper(graph, platform, com_mapper)
        init_app_ncs(self, graph)
        if self.p != 2:
            log.error(f"Metric space embeddings only supports p = 2."
                      f" For p = 1, for example, finding such an embedding"
                      f" is NP-hard (See Matousek, J.,  Lectures on Discrete"
                      f" Geometry, Chap. 15.5)")
        MetricSpaceEmbedding.__init__(
            self,
            self._M,
            self._d,
            jlt_tries=self.jlt_tries,
            embedding_matrix_path=self.embedding_matrix_path,
            target_distortion=self.target_distortion,
            verbose=verbose,
            disable_embedding_test=disable_embedding_test,
        )
        log.info(f"Found embedding with distortion: {self.distortion}")
Пример #3
0
def mapping(graph, platform):
    com_mapper = ComFullMapper(graph, platform)
    mapper = ProcPartialMapper(graph, platform, com_mapper)
    from_list = []
    # Map process "a"
    from_list.append(0)
    # Map process "b"
    from_list.append(1)
    mapping = mapper.generate_mapping(from_list)
    return mapping
Пример #4
0
 def __init__(self, graph, platform, trace, threshold, threads=1):
     self.graph = graph
     self.platform = platform
     self.trace = trace
     self.randMapGen = RandomPartialMapper(self.graph, self.platform)
     self.comMapGen = ComPartialMapper(self.graph, self.platform,
                                       self.randMapGen)
     self.dcMapGen = ProcPartialMapper(self.graph, self.platform,
                                       self.comMapGen)
     self.threads = threads
     self.threshold = threshold
     self.cache = {}
     self.total_cached = 0
     self.oracle_type = "simulation"
Пример #5
0
def test_allEquivalent(platform, graph):
    com_mapper = ComFullMapper(graph, platform)
    mapper = ProcPartialMapper(graph, platform, com_mapper)
    mapping = mapper.generate_mapping([0, 1])

    representation = SymmetryRepresentation(graph, platform)
    assert len(list(representation.allEquivalent(mapping))) == 12
    assert (
        len(list(representation.allEquivalent(mapping, only_support=True))) == 6
    )
    representation = SymmetryRepresentation(graph, platform, disable_mpsym=True)
    assert len(list(representation.allEquivalent(mapping))) == 12
    assert (
        len(list(representation.allEquivalent(mapping, only_support=True))) == 6
    )
Пример #6
0
    def __call__(cls, *args, **kwargs):
        time = timeit.default_timer()
        graph = args[0]
        platform = args[1]
        graph_names, platform_names = MappingRepresentation.gen_hash(
            graph, platform)

        if (cls, graph, platform) in cls._instances:
            different = cls._instances[(cls, graph,
                                        platform)].changed_parameters(
                                            *args[2:])

        if (cls, graph, platform) not in cls._instances or different:
            # make hashables of these two
            cls._instances[(cls, graph_names, platform_names)] = super(
                MappingRepresentation, cls).__call__(*args, **kwargs)
            log.info(
                f"Initializing representation {cls} of graph with processes: "
                f"{graph_names} on platform with cores {platform_names}")

        instance = copy(cls._instances[(cls, graph_names, platform_names)])
        instance.graph = graph
        instance.platform = platform
        com_mapper = ComFullMapper(graph, platform)
        instance.list_mapper = ProcPartialMapper(graph, platform, com_mapper)
        instance.init_time = timeit.default_timer() - time
        return instance
Пример #7
0
class MappingCompletionWrapper:
    """A wrapper class for different partial and full mappers in order
    to create a complete mapping out of a process mapping vector.
    """

    def __init__(self, graph, platform):
        self.__graph = graph
        self.__platform = platform

        self.__fullMapper = RandomPartialMapper(graph, platform, None)
        self.__communicationMapper = ComPartialMapper(graph, platform, self)
        self.__processMapper = ProcPartialMapper(graph, platform, self)

    def completeMappingAtRandom(self, processMappingVector):
        # create empty mapping, complete it with generated process mapping
        # and random channel mapping
        mapping = Mapping(self.__graph, self.__platform)
        mapping.from_list(processMappingVector)

        assert mapping.get_unmapped_channels() == []
        assert mapping.get_unmapped_processes() == []

        return mapping

    def completeMappingBestEffort(self, processMappingVector):
        mapping = self.__processMapper.generate_mapping(processMappingVector)
        mapping = self.__fullMapper.generate_mapping(part_mapping=mapping)
        # self.__processMapper.reset() #not sure what this is supposed to do
        return mapping

    def generate_mapping(self, mapping):
        return mapping
Пример #8
0
 def __init__(
     self,
     graph,
     platform,
     channels=False,
     periodic_boundary_conditions=False,
     norm_p=2,
 ):
     self.graph = graph
     self.platform = platform
     self.channels = channels
     self.boundary_conditions = periodic_boundary_conditions
     self.p = norm_p
     self.num_procs = len(list(self.graph._processes.keys()))
     com_mapper = ComFullMapper(graph, platform)
     self.list_mapper = ProcPartialMapper(graph, platform, com_mapper)
Пример #9
0
    def apply_singlePerturbation(self, mapping, history):
        """Creates a defined number of unique single core perturbations
        Therefore, the mapping is interpreted as vector with the
        processor cores assigned to the vector elements.
        """
        rand_part_mapper = RandomPartialMapper(self.graph, self.platform)
        proc_part_mapper = ProcPartialMapper(
            self.graph, self.platform, rand_part_mapper
        )
        iteration_max = self.iteration_max

        pe = rand.randint(0, len(list(self.platform.processors())) - 1)
        process = rand.randint(0, len(list(self.graph.processes())) - 1)

        vec = []
        # assign cores to vector
        pe_mapping = proc_part_mapper.get_pe_name_mapping()
        log.debug(str(pe_mapping))
        for p in self.graph.processes():
            log.debug(mapping.affinity(p).name)
            vec.append(pe_mapping[mapping.affinity(p).name])

        log.debug("Process: {} PE: {} vec: {}".format(process, pe, vec))
        orig_vec = vec[:]
        vec[process] = pe  # apply initial perturbation to mapping
        log.debug("Perturbated vec: {} Original vec: {}".format(vec, orig_vec))

        # The code above can produce identical perturbations, the following loop should prevent this:
        timeout = 0
        while timeout < iteration_max:
            perturbated_mapping = proc_part_mapper.generate_mapping(
                vec, history
            )
            if perturbated_mapping:
                break
            else:
                pe = rand.randint(0, len(list(self.platform.processors())) - 1)
                process = rand.randint(0, len(list(self.graph.processes())) - 1)
                vec[process] = pe  # apply a new perturbation to mapping
            timeout += 1

        if timeout == iteration_max:
            log.error("Could not find a new perturbation")
            sys.exit(1)

        return perturbated_mapping
Пример #10
0
def pareto_mappings(platform, graph):
    com_mapper = ComFullMapper(graph, platform)
    mapper = ProcPartialMapper(graph, platform, com_mapper)

    mapping_tuples = [
        ([0, 0], 10.2, 21.45),
        ([0, 5], 5.2, 31.15),
        ([0, 1], 9.7, 23.45),
        ([4, 4], 6.0, 35.45),
        ([4, 5], 4.32, 39.1),
    ]

    mappings = []

    for tup in mapping_tuples:
        mapping = mapper.generate_mapping(tup[0])
        mapping.metadata.exec_time = tup[1]
        mapping.metadata.energy = tup[2]
        mappings.append(mapping)

    return mappings
Пример #11
0
def test_mapping_table_writer_with(platform, graph, tmpdir, expected_csv):
    output_file = Path(tmpdir).joinpath("output_table.csv")
    com_mapper = ComFullMapper(graph, platform)
    mapper = ProcPartialMapper(graph, platform, com_mapper)

    mapping1 = mapper.generate_mapping([0, 0])
    mapping1.metadata.exec_time = 10.2
    mapping1.metadata.energy = 21.45

    mapping2 = mapper.generate_mapping([0, 5])
    mapping2.metadata.exec_time = 5.2
    mapping2.metadata.energy = 31.15

    attributes = {"num_resources": num_resources}
    with MappingTableWriter(
        platform, graph, output_file, attributes=attributes
    ) as writer:
        writer.write_header()
        writer.write_mapping(mapping1)
        writer.write_mapping(mapping2)

    assert filecmp.cmp(output_file, expected_csv, shallow=False)
Пример #12
0
    def __init__(
        self,
        platform,
        graph,
        path,
        process_prefix="t_",
        process_suffix="",
        metadata_exec_time="executionTime",
        metadata_energy="dynamicEnergy",
        attributes=None,
    ):
        self.platform = platform
        self.graph = graph
        self.path = path

        self._process_prefix = process_prefix
        self._process_suffix = process_suffix
        self._metadata_exec_time = metadata_exec_time
        self._metadata_energy = metadata_energy
        self._attributes = attributes
        if self._attributes is None:
            self._attributes = []

        # Parsed data
        self._data = []
        # Read and constructed mappings
        self.mappings = None

        self.com_mapper = ComFullMapper(graph, platform)
        self.mapper = ProcPartialMapper(graph, platform, self.com_mapper)

        self._process_names = [p.name for p in self.graph.processes()]

        self._processor_numbers = {}
        for i, pe in enumerate(self.platform.processors()):
            self._processor_numbers[pe.name] = i

        self._read_csv()
Пример #13
0
class MappingTableReader:
    """A CSV Mapping Table reader.

    This class reads the content of the CSV file and returns a list of
    mappings along with its attributes.

    Rows of the CSV table describe different mappings of an application to a
    platform. The columns starting with `process_prefix` and ending with
    `process_suffix` describe the process allocation onto the platform.
    The columns `metadata_exec_time` and `metadata_energy` describe the metadata
    value. The collumns in the `attributes` list describe the additional mapping
    attribute to extract.

    :param platform: The platform.
    :type platform: Platform
    :param graph: The dataflow graph.
    :type graph: DataflowGraph
    :param path: The path to CSV file.
    :type path: string
    :param process_prefix: The prefix of processes in the CSV table.
    :type process_prefix: string
    :param process_suffix: The suffix of processes in the CSV table.
    :type process_suffix: string
    :param metadata_exec_time: The name of the execution time column.
    :type metadata_exec_time: string or None
    :param metadata_energy: The name of the energy column.
    :type metadata_energy: string or None
    :param attributes: The list of attributes to extract.
    :type attributes: list of strings or None
    """

    def __init__(
        self,
        platform,
        graph,
        path,
        process_prefix="t_",
        process_suffix="",
        metadata_exec_time="executionTime",
        metadata_energy="dynamicEnergy",
        attributes=None,
    ):
        self.platform = platform
        self.graph = graph
        self.path = path

        self._process_prefix = process_prefix
        self._process_suffix = process_suffix
        self._metadata_exec_time = metadata_exec_time
        self._metadata_energy = metadata_energy
        self._attributes = attributes
        if self._attributes is None:
            self._attributes = []

        # Parsed data
        self._data = []
        # Read and constructed mappings
        self.mappings = None

        self.com_mapper = ComFullMapper(graph, platform)
        self.mapper = ProcPartialMapper(graph, platform, self.com_mapper)

        self._process_names = [p.name for p in self.graph.processes()]

        self._processor_numbers = {}
        for i, pe in enumerate(self.platform.processors()):
            self._processor_numbers[pe.name] = i

        self._read_csv()

    def _read_csv(self):
        prefix = self._process_prefix
        suffix = self._process_suffix
        time_col = self._metadata_exec_time
        energy_col = self._metadata_energy

        with open(self.path) as csv_file:
            reader = csv.DictReader(csv_file)

            for row in reader:
                to_update = {}

                for name in self._process_names:
                    to_update.update({name: row[prefix + name + suffix]})
                # Save desired property to a dict
                for p in self._attributes:
                    to_update.update({p: row[p]})
                # Save energy-utility metadata to a dict
                if time_col is not None:
                    to_update.update({time_col: row[time_col]})
                if energy_col is not None:
                    to_update.update({energy_col: row[energy_col]})
                self._data.append(to_update)

    def form_mappings(self):
        """Form mappings from the parsed data.

        Returns the list of tuples, the first element of the tuple is the
        `Mapping` object, the next elements are the attribute values in the
        order of `attributes` paramater.
        """
        if self.mappings is not None:
            log.warning("Mappings were already generated, returning them.")
            return self.mappings

        time_col = self._metadata_exec_time
        energy_col = self._metadata_energy
        self.mappings = []
        for entry in self._data:
            from_list = []

            for process in self._process_names:
                pe = self._processor_numbers[entry[process]]
                from_list.append(pe)

            if from_list != []:
                mapping = self.mapper.generate_mapping(from_list)
                # Update energy-utility metadata
                if time_col is not None:
                    mapping.metadata.exec_time = float(entry[time_col])
                if energy_col is not None:
                    mapping.metadata.energy = float(entry[energy_col])
            else:
                mapping = Mapping(self.graph, self.platform)

            self.mappings.append(
                (mapping,) + tuple(entry[p] for p in self._attributes)
            )
        return self.mappings
Пример #14
0
def mapper(graph, platform_odroid):
    com_mapper = ComFullMapper(graph, platform_odroid)
    return ProcPartialMapper(graph, platform_odroid, com_mapper)
Пример #15
0
class SimpleVectorRepresentation(metaclass=MappingRepresentation):
    """Simple Vector Representation:
    This representation treats mappings as vectors. The first dimensions (or components)
    of this vector represent the processes, and the values represent the PE where
    said processes are mapped. After the mapping of processes to PEs, the same
    method is applied to encode the channel to communication primitive mapping.
    This is only done if the channels variable is set when intializing the
    repreresentation object.

    A visualization of the encoding:
    [ P_1, P_2, ... , P_k, C_1, ..., C_l]
       ^ PE where           ^ Comm. prim.
         process 1            where chan. 1
         is mapped.           is mapped.


    Methods generally work with objects of the `mocasin.common.mapping.Mapping`
    class. Exceptions are the fromRepresentation method, which takes a vector
    and returns a Mapping object, and methods prefixed with an "_".
    Methods prefixed with "_", like _uniformFromBall generally work directly
    with the representation. Its usage is discouraged for having a standard
    interface, but they are provided in case they prove useful, when you know
    what you are doing.
    """
    def __init__(
        self,
        graph,
        platform,
        channels=False,
        periodic_boundary_conditions=False,
        norm_p=2,
    ):
        self.graph = graph
        self.platform = platform
        self.channels = channels
        self.boundary_conditions = periodic_boundary_conditions
        self.p = norm_p
        self.num_procs = len(list(self.graph._processes.keys()))
        com_mapper = ComFullMapper(graph, platform)
        self.list_mapper = ProcPartialMapper(graph, platform, com_mapper)

    def changed_parameters(self, channels, periodic_boundary_conditions,
                           norm_p):
        return (self.channels != channels
                or self.boundary_conditions != periodic_boundary_conditions
                or self.p != norm_p)

    def _uniform(self):
        Procs = sorted(list(self.graph._processes.keys()))
        PEs = sorted(list(self.platform._processors.keys()))
        pe_mapping = list(randint(0, len(PEs), size=len(Procs)))
        if self.channels:
            return SimpleVectorRepresentation.randomPrimitives(
                self, pe_mapping)
        else:
            return pe_mapping

    def randomPrimitives(self, pe_mapping):
        Procs = sorted(list(self.graph._processes.keys()))
        PEs = sorted(list(self.platform._processors.keys()))
        CPs = sorted(list(self.platform._primitives.keys()))
        res = pe_mapping[:len(Procs)]
        for c in self.graph.channels():
            suitable_primitives = []
            for p in self.platform.primitives():
                # assert: len([..]) list in next line == 1
                src_proc_idx = [
                    i for i, x in enumerate(Procs) if x == c.source.name
                ][0]
                src_pe_name = PEs[res[src_proc_idx]]
                src = self.platform.find_processor(src_pe_name)
                sink_procs_idxs = [
                    i for i, x in enumerate(Procs)
                    if x in [snk.name for snk in c.sinks]
                ]
                try:
                    sink_pe_names = [PEs[res[s]] for s in sink_procs_idxs]
                except:
                    log.error(f"Invalid mapping: {res} \n PEs: "
                              f"{PEs},\n sink_procs_idxs: {sink_procs_idxs}\n")
                sinks = [
                    self.platform.find_processor(snk) for snk in sink_pe_names
                ]
                if p.is_suitable(src, sinks):
                    suitable_primitives.append(p)
            primitive = suitable_primitives[randint(
                0, len(suitable_primitives))].name
            primitive_idx = [i for i, x in enumerate(CPs) if x == primitive][0]
            res.append(primitive_idx)
        return res

    def uniform(self):
        return self.fromRepresentation(self._uniform())

    def toRepresentation(self, mapping):
        return mapping.to_list(channels=self.channels)

    def fromRepresentation(self, mapping):
        if type(mapping) == np.ndarray:
            mapping = mapping.astype(int)
        mapping_obj = self.list_mapper.generate_mapping(mapping)
        return mapping_obj

    def _simpleVec2Elem(self, x):
        if not self.channels:
            return x
        else:
            m = self.list_mapper.generate_mapping(x)
            return m.to_list(channels=True)

    def _elem2SimpleVec(self, x):
        if self.channels:
            return x
        else:
            return x[:self.num_procs]

    def _uniformFromBall(self, p, r, npoints=1, simple=False):
        Procs = list(self.graph._processes.keys())
        PEs = list(self.platform._processors.keys())
        P = len(PEs)
        res = []

        def _round(point):
            # perodic boundary conditions
            rounded = int(round(point) % P)
            if self.boundary_conditions:
                return rounded
            else:
                if point > P - 1:
                    return P - 1
                elif point < 0:
                    return 0
                else:
                    return rounded

        center = p[:len(Procs)]
        for _ in range(npoints):
            if simple:
                radius = _round(r / 2)
                offset = []
                for _ in range(len(Procs)):
                    offset.append(randint(-radius, radius))

            else:
                offset = r * lp.uniform_from_p_ball(p=self.p, n=len(Procs))
            real_point = (np.array(center) + np.array(offset)).tolist()
            v = list(map(_round, real_point))

            if self.channels:
                res.append(self.randomPrimitives(v))
            else:
                res.append(v)
        log.debug(f"uniform from ball: {res}")
        return res

    def uniformFromBall(self, p, r, npoints=1):
        return self.fromRepresentation(
            self._uniformFromBall(p, r, npoints=npoints))

    def distance(self, x, y):
        a = np.array(x)
        b = np.array(y)
        return np.linalg.norm(a - b)

    def _distance(self, x, y):
        return self.distance(x, y)

    def approximate(self, x):
        approx = np.rint(x).astype(int)
        P = len(list(self.platform._processors.keys()))
        if self.boundary_conditions:
            res = list(map(lambda t: t % P, approx))
        else:
            res = list(map(lambda t: max(0, min(t, P - 1)), approx))
        return res

    def crossover(self, m1, m2, k):
        return self._crossover(self.toRepresentation(m1),
                               self.toRepresentation(m2), k)

    def _crossover(self, m1, m2, k):
        assert len(m1) == len(m2)
        crossover_points = random.sample(range(len(m1)), k)
        swap = False
        for i in range(len(m1)):
            if i in crossover_points:
                swap = not swap
            if swap:
                m1[i] = m2[i]
                m2[i] = m2[i]
        log.debug(f"crossover: {m1},{m2}")

        return m1, m2
Пример #16
0
class SymmetryRepresentation(metaclass=MappingRepresentation):
    """Symmetry Representation
    This representation considers the *archtiecture* symmetries for mappings.
    Application symmetries are still WIP. Mappings in this representation are
    vectors, too, just like in the Simple Vector Representation. The difference
    is that the vectors don't correspond to a single mapping, but to an equivalence
    class of mappings. Thus, two mappings that are equivalent through symmetries
    will yield the same vector in this representation. This unique vectors
    for each equivalent class are called "canonical mappings", because they
    are canonical representatives of their orbit. Canonical mappings are the
    lexicographical lowest elements of the equivalence class.

    For example, if the PEs 0-3 are all equivalent, and PEs 4-7
    are also equivalent independently (as would be the case on
    an Exynos ARM big.LITTLE), these two mappings of 5 Processes
    are equivalent:
       [1,1,3,4,6] and [1,1,0,5,4]
    This representation would yield neither of them, as the
    following mapping is smaller lexicographically than both:
       [0,0,1,4,5]
    This is the canonical mapping of this orbit and what this representation would
    use to represent the class.

    This representation currently just supports global symmetries,
    partial symmetries are WIP.

    Methods generally work with objects of the `mocasin.common.mapping.Mapping`
    class. Exceptions are the fromRepresentation method, which takes a vector
    and returns a Mapping object, and methods prefixed with an "_".
    Methods prefixed with "_", like _allEquivalent generally work directly
    with the representation.

    In order to work with other mappings in the same class, the methods
    allEquivalent/_allEquivalent returns for a mapping, all mappings in that class.

    The channels flag, when set to true, considers channels in the mapping vectors too.
    This is not supported and tested yet.

    The periodic_boundary_conditions flag encodes whether distances measured in this
    space are considered by taking periodic boundary conditions or not.

    The norm_p parameter sets the p value for the norm (\sum |x_i|^p)^(1/p).

    The symmetries representation might be used to accelerate a meta-heuristic without
    changing it, by enabling a symmetry-aware cache. This can be achieved by setting
    the canonical_operations flag to False. This way, the operations of the
    representation, like distances or considering elements in a ball, are not executed
    on the canonical representatives but on the raw elements instead.

    The symmetries representation uses the mpsym library to accelerate symmetry
    calculations. This can be disabled by setting disable_mpsym to True, which
    uses the python fallback version of the symmetries instead.

    The calculation of the symmetries can be a costly computation, yet it only
    depends on the architecture. Thus, the symmetries of an architecture can be
    pre-computed, stored to and read from a file. If the platform object has
    the field symmetries_json, the symmetries are read from the file in that path.
    Testing that these symmetries actually correspond to the platform can be disabled
    with the disable_symmetries_test flag. This can be useful, e.g. for approximating
    a NoC architecture as a bus. To pre-compute the symmetries and store them in a file,
    use the calculate_platform_symmetries task.  This pre-computation only works when
    using mpsym.
    """
    def __init__(
        self,
        graph,
        platform,
        channels=False,
        periodic_boundary_conditions=False,
        norm_p=2,
        canonical_operations=True,
        disable_mpsym=False,
        disable_symmetries_test=False,
    ):
        self._topologyGraph = platform.to_adjacency_dict(
            include_proc_type_labels=True)
        self.graph = graph
        self.platform = platform
        self._d = len(graph.processes())
        init_app_ncs(self, graph)
        self._arch_nc_inv = {}
        self.channels = channels
        self.boundary_conditions = periodic_boundary_conditions
        self.p = norm_p
        com_mapper = ComFullMapper(graph, platform)
        self.list_mapper = ProcPartialMapper(graph, platform, com_mapper)
        self.canonical_operations = canonical_operations

        n = len(self.platform.processors())
        correct = None

        if disable_mpsym:
            self.sym_library = False
        else:
            try:
                mpsym
            except NameError:
                self.sym_library = False
            else:
                self.sym_library = True
                if hasattr(platform, "ag"):
                    self._ag = platform.ag
                    log.info(
                        "Symmetries initialized with mpsym: Platform Generator."
                    )
                elif hasattr(platform, "ag_json"):
                    if exists(platform.ag_json):
                        self._ag = mpsym.ArchGraphSystem.from_json_file(
                            platform.ag_json)
                        if disable_symmetries_test:
                            log.warning(
                                "Using symmetries JSON without testing.")
                            correct = True
                        else:
                            try:
                                correct = checkSymmetries(
                                    platform.to_adjacency_dict(),
                                    self._ag.automorphisms(),
                                )
                            except Exception as e:
                                log.warning(
                                    "An unknown error occurred while reading "
                                    "the embedding JSON file. Did you provide "
                                    "the correct file for the given platform? "
                                    f"({e})")
                                correct = False
                        if not correct:
                            log.warning(
                                "Symmetries json does not fit platform.")
                            del self._ag
                        else:
                            log.info(
                                "Symmetries initialized with mpsym: JSON file."
                            )
                    else:
                        log.warning(
                            "Invalid symmetries JSON path (file does not exist)."
                        )

                if not hasattr(self, "_ag"):
                    # only calculate this if not already present
                    log.info("No pre-comupted mpsym symmetry group available."
                             " Initalizing architecture graph...")
                    (
                        adjacency_dict,
                        num_vertices,
                        coloring,
                        self._arch_nc,
                    ) = to_labeled_edge_graph(self._topologyGraph)
                    nautygraph = pynauty.Graph(num_vertices, True,
                                               adjacency_dict, coloring)
                    log.info("Architecture graph initialized. Calculating "
                             "automorphism group using Nauty...")
                    autgrp_edges = pynauty.autgrp(nautygraph)
                    autgrp, _ = edge_to_node_autgrp(autgrp_edges[0],
                                                    self._arch_nc)
                    self._ag = mpsym.ArchGraphAutomorphisms(
                        [mpsym.Perm(g) for g in autgrp])
                    for node in self._arch_nc:
                        self._arch_nc_inv[self._arch_nc[node]] = node
                        # TODO: ensure that nodes_correspondence fits simpleVec

        if not self.sym_library:
            log.info(
                "Using python symmetries: Initalizing architecture graph...")
            (
                adjacency_dict,
                num_vertices,
                coloring,
                self._arch_nc,
            ) = to_labeled_edge_graph(self._topologyGraph)
            nautygraph = pynauty.Graph(num_vertices, True, adjacency_dict,
                                       coloring)
            log.info("Architecture graph initialized. Calculating "
                     "automorphism group using Nauty...")
            autgrp_edges = pynauty.autgrp(nautygraph)
            autgrp, _ = edge_to_node_autgrp(autgrp_edges[0], self._arch_nc)
            permutations_lists = map(list_to_tuple_permutation, autgrp)
            permutations = [
                Permutation.fromLists(p, n=n) for p in permutations_lists
            ]
            self._G = PermutationGroup(permutations)
            log.info("Initialized automorphism group with internal symmetries")

    def _simpleVec2Elem(self, x):
        x_ = x[:self._d]
        # keep channels if exist (they should be mapped accordingly...)
        _x = x[self._d:]
        if self.sym_library:
            return list(self._ag.representative(x_)) + _x
        else:
            return self._G.tuple_normalize(x_) + _x

    def changed_parameters(self):
        return False

    def _elem2SimpleVec(self, x):
        return x

    def _uniform(self):
        procs_only = SimpleVectorRepresentation._uniform(self)[:self._d]
        if self.sym_library:
            return self._ag.representative(procs_only)
        else:
            return self._G.tuple_normalize(procs_only)

    def uniform(self):
        return self.fromRepresentation(self._uniform())

    def _allEquivalent(self, x, only_support=False):
        x_ = x[:self._d]
        if self.sym_library:
            # TODO: Orbit exploration with support is not implemented in mpsym
            support_orbit = set()
            for p in self._ag.orbit(x_):
                if only_support:
                    support = frozenset(p)
                    if support in support_orbit:
                        continue
                    support_orbit.add(support)
                yield tuple(p)

        else:
            for x in self._G.tuple_orbit(x_, only_support=only_support):
                yield x

    def allEquivalent(self, x, only_support=False):
        """Generate all equivalent mappings to the given one.

        If `only_support` is true, the generator returns only the mappings, for
        which occupied cores (or a support) are different, otherwise, it returns
        all equivalent mappings.
        """
        x_ = x.to_list(channels=False)
        for elem in self._allEquivalent(x_, only_support=only_support):
            mapping = self.list_mapper.generate_mapping(list(elem))
            if hasattr(x, "metadata"):
                mapping.metadata = copy(x.metadata)
            yield mapping

    def toRepresentation(self, mapping):
        return self._simpleVec2Elem(mapping.to_list(channels=self.channels))

    def toRepresentationNoncanonical(self, mapping):
        return SimpleVectorRepresentation.toRepresentation(self, mapping)

    def fromRepresentation(self, mapping):
        # Does not check if canonical. This is deliberate.
        mapping_obj = self.list_mapper.generate_mapping(mapping)
        return mapping_obj

    def _uniformFromBall(self, p, r, npoints=1):
        return SimpleVectorRepresentation._uniformFromBall(self,
                                                           p,
                                                           r,
                                                           npoints=npoints)

    def uniformFromBall(self, p, r, npoints=1):
        return self.fromRepresentation(
            self._uniformFromBall(p, r, npoints=npoints))

    def distance(self, x, y):
        if self.canonical_operations:
            return SimpleVectorRepresentation.distance(
                self, self.toRepresentation(x), self.toRepresentation(y))
        else:
            xsv = SimpleVectorRepresentation.toRepresentation(self, x)
            ysv = SimpleVectorRepresentation.toRepresentation(self, y)
            return SimpleVectorRepresentation.distance(self, xsv, ysv)

    def crossover(self, m1, m2, k):
        if self.canonical_operations:
            return SimpleVectorRepresentation._crossover(
                self, self.toRepresentation(m1), self.toRepresentation(m2), k)
        else:
            xsv = SimpleVectorRepresentation.toRepresentation(self, m1)
            ysv = SimpleVectorRepresentation.toRepresentation(self, m2)
            return SimpleVectorRepresentation._crossover(self, xsv, ysv, k)

    def _crossover(self, x, y, k):
        if self.canonical_operations:
            xcan = self._simpleVec2Elem(x)
            ycan = self._simpleVec2Elem(y)
            xcx, ycx = SimpleVectorRepresentation._crossover(
                self, xcan, ycan, k)
            # update manually so that we return DEAP Individuals in DEAP
            for i in range(len(x)):
                x[i] = xcx[i]
                y[i] = ycx[i]
            return x, y
        else:
            return SimpleVectorRepresentation._crossover(self, x, y, k)

    def approximate(self, x):
        approx = SimpleVectorRepresentation.approximate(self, x)
        return self._simpleVec2Elem(approx)
Пример #17
0
class Simulation(Oracle):
    """simulation code"""
    def __init__(self, graph, platform, trace, threshold, threads=1):
        self.graph = graph
        self.platform = platform
        self.trace = trace
        self.randMapGen = RandomPartialMapper(self.graph, self.platform)
        self.comMapGen = ComPartialMapper(self.graph, self.platform,
                                          self.randMapGen)
        self.dcMapGen = ProcPartialMapper(self.graph, self.platform,
                                          self.comMapGen)
        self.threads = threads
        self.threshold = threshold
        self.cache = {}
        self.total_cached = 0
        self.oracle_type = "simulation"

    def prepare_sim_contexts_for_samples(self, samples):
        """Prepare simualtion/application context and mapping for a each element in `samples`."""

        # Create a list of 'simulation contexts'.
        # These can be later executed by multiple worker processes.
        simulation_contexts = []

        for i in range(0, len(samples)):
            log.debug("Using simcontext no.: {} {}".format(i, samples[i]))
            # create a simulation context
            mapping = self.dcMapGen.generate_mapping(
                list(map(int, samples[i].sample2simpleTuple())))
            sim_context = self.prepare_sim_context(mapping)
            samples[i].setSimContext(sim_context)

    def prepare_sim_context(self, mapping):
        sim_mapping = self.dcMapGen.generate_mapping(mapping.to_list())
        sim_context = DataflowSimulation(self.platform, self.graph,
                                         sim_mapping, self.trace)
        log.debug("Mapping toList: {}".format(sim_mapping.to_list()))
        return sim_context

    def is_feasible(self, samples):
        """Checks if a set of samples is feasible in context of a given timing threshold.

        Trigger the simulation on 4 for parallel jobs and process the resulting array
        of simulation results according to the given threshold.
        """
        results = []
        # run simulations and search for the best mapping
        if len(samples) > 1 and self.threads > 1:
            # run parallel simulation for more than one sample in samples list
            from multiprocessing import Pool

            log.debug("Running parallel simulation for {} samples".format(
                len(samples)))
            pool = Pool(processes=self.threads, maxtasksperchild=100)
            results = list(
                pool.map(self.run_simulation, samples, chunksize=self.threads))
        else:
            # results list of simulation contexts
            log.debug("Running single simulation")
            results = list(map(self.run_simulation, samples))

        # find runtime from results
        exec_times = []  # in ps
        for r in results:
            exec_times.append(float(r.sim_context.result.exec_time))

        feasible = []
        for r in results:
            assert r.sim_context.result and r.sim_context.result.exec_time
            ureg = pint.UnitRegistry()
            threshold = ureg(self.threshold).to(ureg.ps).magnitude

            if r.sim_context.result.exec_time > threshold:
                r.setFeasibility(False)
                feasible.append(False)
            else:
                r.setFeasibility(True)
                feasible.append(True)

        log.debug("Exec.-Times: {} Feasible: {}".format(exec_times, feasible))
        # return samples with the according sim context
        return results

    def run_simulation(self, sample):
        # do simulation requires sim_context
        if sample.sim_context.result is not None:
            self.total_cached += 1
            return sample
        try:
            utils.run_simulation(sample.sim_context)

            # add to cache
            mapping = tuple(sample.getMapping().to_list())
            self.cache[mapping] = sample.sim_context.result

        except Exception as e:
            log.debug("Exception in Simulation: {}".format(str(e)))
            traceback.print_exc()
            # log.exception(str(e))
            if hasattr(e, "details"):
                log.info(e.details())
        return sample
Пример #18
0
    def __init__(
        self,
        graph,
        platform,
        channels=False,
        periodic_boundary_conditions=False,
        norm_p=2,
        canonical_operations=True,
        disable_mpsym=False,
        disable_symmetries_test=False,
    ):
        self._topologyGraph = platform.to_adjacency_dict(
            include_proc_type_labels=True)
        self.graph = graph
        self.platform = platform
        self._d = len(graph.processes())
        init_app_ncs(self, graph)
        self._arch_nc_inv = {}
        self.channels = channels
        self.boundary_conditions = periodic_boundary_conditions
        self.p = norm_p
        com_mapper = ComFullMapper(graph, platform)
        self.list_mapper = ProcPartialMapper(graph, platform, com_mapper)
        self.canonical_operations = canonical_operations

        n = len(self.platform.processors())
        correct = None

        if disable_mpsym:
            self.sym_library = False
        else:
            try:
                mpsym
            except NameError:
                self.sym_library = False
            else:
                self.sym_library = True
                if hasattr(platform, "ag"):
                    self._ag = platform.ag
                    log.info(
                        "Symmetries initialized with mpsym: Platform Generator."
                    )
                elif hasattr(platform, "ag_json"):
                    if exists(platform.ag_json):
                        self._ag = mpsym.ArchGraphSystem.from_json_file(
                            platform.ag_json)
                        if disable_symmetries_test:
                            log.warning(
                                "Using symmetries JSON without testing.")
                            correct = True
                        else:
                            try:
                                correct = checkSymmetries(
                                    platform.to_adjacency_dict(),
                                    self._ag.automorphisms(),
                                )
                            except Exception as e:
                                log.warning(
                                    "An unknown error occurred while reading "
                                    "the embedding JSON file. Did you provide "
                                    "the correct file for the given platform? "
                                    f"({e})")
                                correct = False
                        if not correct:
                            log.warning(
                                "Symmetries json does not fit platform.")
                            del self._ag
                        else:
                            log.info(
                                "Symmetries initialized with mpsym: JSON file."
                            )
                    else:
                        log.warning(
                            "Invalid symmetries JSON path (file does not exist)."
                        )

                if not hasattr(self, "_ag"):
                    # only calculate this if not already present
                    log.info("No pre-comupted mpsym symmetry group available."
                             " Initalizing architecture graph...")
                    (
                        adjacency_dict,
                        num_vertices,
                        coloring,
                        self._arch_nc,
                    ) = to_labeled_edge_graph(self._topologyGraph)
                    nautygraph = pynauty.Graph(num_vertices, True,
                                               adjacency_dict, coloring)
                    log.info("Architecture graph initialized. Calculating "
                             "automorphism group using Nauty...")
                    autgrp_edges = pynauty.autgrp(nautygraph)
                    autgrp, _ = edge_to_node_autgrp(autgrp_edges[0],
                                                    self._arch_nc)
                    self._ag = mpsym.ArchGraphAutomorphisms(
                        [mpsym.Perm(g) for g in autgrp])
                    for node in self._arch_nc:
                        self._arch_nc_inv[self._arch_nc[node]] = node
                        # TODO: ensure that nodes_correspondence fits simpleVec

        if not self.sym_library:
            log.info(
                "Using python symmetries: Initalizing architecture graph...")
            (
                adjacency_dict,
                num_vertices,
                coloring,
                self._arch_nc,
            ) = to_labeled_edge_graph(self._topologyGraph)
            nautygraph = pynauty.Graph(num_vertices, True, adjacency_dict,
                                       coloring)
            log.info("Architecture graph initialized. Calculating "
                     "automorphism group using Nauty...")
            autgrp_edges = pynauty.autgrp(nautygraph)
            autgrp, _ = edge_to_node_autgrp(autgrp_edges[0], self._arch_nc)
            permutations_lists = map(list_to_tuple_permutation, autgrp)
            permutations = [
                Permutation.fromLists(p, n=n) for p in permutations_lists
            ]
            self._G = PermutationGroup(permutations)
            log.info("Initialized automorphism group with internal symmetries")
Пример #19
0
class MetricEmbeddingRepresentation(MetricSpaceEmbedding,
                                    metaclass=MappingRepresentation):
    """Metric Space Representation
    A representation for a metric space that uses an efficient embedding into a real space.
    Upon initialization, this representation calculates an embedding into a real space such
    that the distances in the metric space differ from the embedded distances by a factor of
    at most `distortion`.

    Elements in this representation are real vectors, the meaning of the components
    does not have a concrete interpretation. However, they do have a particular
    structure. For multiple processes, a single embedding for the architecture is
    calculated. The multi-process vector space is the orthogonal sum of copies of a vector
    space emebedding for the single-process case. This provably preserves the distortion
    and makes calculations much more efficient.

    The additional option, extra_dims, adds additional dimensions for each PE to count
    when multiple processes are mapped to the same PE. The scaling factor for those extra
    dimensions is controlled by the value of extra_dims_factor.

    When the ignore_channels flag is set to true, the embedding ignores communication channels,
    only focusing on the mapping of computation.

    The target_distortion value sets the maximum distortion of the metric space that is allowed
    for the embedding. A value close to 1 might be hard or even impossible,
    a higher value reduces accuracy but allows to reduce the dimension of the embedding more using the
    JLT-based dimensionality-reduction. The number of tries to achieve the target distortion for
    a given dimension is controlled by the parameter jlt_tries.

    The verbose flag controls the verbosity of the module.

    Finally, since the embedding depends only on the architecture, it can be pre-computed
    and stored in a file. This file is read from the architecture description. If the
    architecture object has a field embedding_json, it will read the precomputed
    embedding from a json file in this path. Most architectures set this field from a
    parameter with the same name that can be configured in hydra.

    Such a json file can be generated using the calculate_platform_embedding task.
    If no such file exists, or it is invalid, an embedding will be computed from scratch.
    The flag disable_embedding_test can be set to True to accept the embedding from the
    json without checking it fits the given architecture and parameters.
    """
    def __init__(
        self,
        graph,
        platform,
        norm_p,
        extra_dimensions=True,
        extra_dimensions_factor=3,
        ignore_channels=True,
        target_distortion=1.1,
        jlt_tries=10,
        verbose=False,
        disable_embedding_test=False,
    ):
        # todo: make sure the correspondence of cores is correct!
        M_matrix, self._arch_nc, self._arch_nc_inv = arch_to_distance_metric(
            platform, heterogeneity=extra_dimensions)
        self._M = FiniteMetricSpace(M_matrix)
        self.graph = graph
        self.platform = platform
        self.extra_dims = extra_dimensions
        self.jlt_tries = jlt_tries
        self.target_distortion = target_distortion
        self.ignore_channels = ignore_channels
        self.verbose = verbose
        if hasattr(platform, "embedding_json"):
            self.embedding_matrix_path = platform.embedding_json
        else:
            self.embedding_matrix_path = None

        if not self.ignore_channels:
            log.warning("Not ignoring channels might lead"
                        " to invalid mappings when approximating.")
        self.extra_dims_factor = extra_dimensions_factor
        self._d = len(graph.processes())
        if self.extra_dims:
            self._split_d = self._d
            self._split_k = len(platform.processors())
            self._d += len(graph.channels())
        self.p = norm_p
        com_mapper = ComFullMapper(graph, platform)
        self.list_mapper = ProcPartialMapper(graph, platform, com_mapper)
        init_app_ncs(self, graph)
        if self.p != 2:
            log.error(f"Metric space embeddings only supports p = 2."
                      f" For p = 1, for example, finding such an embedding"
                      f" is NP-hard (See Matousek, J.,  Lectures on Discrete"
                      f" Geometry, Chap. 15.5)")
        MetricSpaceEmbedding.__init__(
            self,
            self._M,
            self._d,
            jlt_tries=self.jlt_tries,
            embedding_matrix_path=self.embedding_matrix_path,
            target_distortion=self.target_distortion,
            verbose=verbose,
            disable_embedding_test=disable_embedding_test,
        )
        log.info(f"Found embedding with distortion: {self.distortion}")

    def changed_parameters(self, norm_p):
        return self.p != norm_p

    def _simpleVec2Elem(self, x):
        proc_vec = x[:self._d]
        as_array = np.array(self.i(proc_vec)).flatten()
        # [value for comp in self.i(x) for value in comp]

        return as_array

    def _elem2SimpleVec(self, x):
        return self.inv(self.approx(x[:(self._k * self._d)]).tolist())

    def _uniform(self):
        res = np.array(self.uniformVector()).flatten()
        return res

    def uniform(self):
        return self.fromRepresentation(
            np.array(self.uniformVector()).flatten())

    def _uniformFromBall(self, p, r, npoints=1):
        log.debug(f"Uniform from ball with radius r={r} around point p={p}")
        # print(f"point of type {type(p)} and shape {p.shape}")
        point = np.array(p).flatten()
        results_raw = MetricSpaceEmbedding.uniformFromBall(
            self, point, r, npoints)
        results = list(
            map(lambda x: np.array(list(np.array(x).flat)), results_raw))
        if self.extra_dims:
            results = list(
                map(
                    lambda x: self._simpleVec2Elem(self._elem2SimpleVec(x)),
                    results,
                ))

        # print(f"results uniform from ball: {results}")
        return results

    def uniformFromBall(self, p, r, npoints=1):
        log.debug(f"Uniform from ball with radius r={r} around point p={p}")
        point = self.toRepresentation(p)
        uniformpoints = MetricSpaceEmbedding.uniformFromBall(
            self, point, r, npoints)
        elements = map(self.fromRepresentation, uniformpoints)
        return list(
            elements
        )  # Returns a list not map object. Do we want to change this?

    def toRepresentation(self, mapping):
        return self._simpleVec2Elem(mapping.to_list(channels=self.extra_dims))

    def fromRepresentation(self, mapping):
        simple_vec = self._elem2SimpleVec(mapping)
        if self.ignore_channels:
            simple_vec = simple_vec[:self._split_d]
        mapping_obj = self.list_mapper.generate_mapping(simple_vec)
        return mapping_obj

    def _distance(self, x, y):
        return lp.p_norm(x - y, self.p)

    def distance(self, x, y):
        return self._distance(self.toRepresentation(x),
                              self.toRepresentation(y))

    def approximate(self, x):
        res = np.array(self.approx(x[:(self._d * self._k)])).flatten()
        return res

    def crossover(self, m1, m2, k):
        return self._crossover(self.toRepresentation(m1),
                               self.toRepresentation(m2), k)

    def _crossover(self, m1, m2, k):
        assert len(m1) == len(m2)
        crossover_points = np.array(random.sample(range(self._d), k)) * self._k
        swap = False
        for i in range(len(m1)):
            if i in crossover_points:
                swap = not swap
            if swap:
                m1[i] = m2[i]
                m2[i] = m2[i]
        return m1, m2