Пример #1
0
print("Enter the names of the files of spectra, one per line \
(followed by the <RETURN>/<ENTER> key).\n\
When done, press <RETURN> on a blank line to proceed.\n\n\
To specify a path relative to the current directory, \
start the file name with \""                             + md.current_dir_id + "\".\n\
You may also provide an absolute path starting with \"" \
+ md.root_dir_id + "\" (root directory)\n\
or with \""            + md.home_dir_id + "\" (home directory).\n\
In all other cases, the path is relative to \""                                                + md.spectra_dir + "\".\n\
(See variables `root_dir_id`, `home_dir_id`, `home_dir` \
and `spectra_dir`\n\
in file \"mod_directories.py\".)"                                 )

while (True):
    row = miu.clean_string(input())
    if row == "":
        break
    else:
        file_name.append(md.path_file(md.spectra_dir, row))
        pass
    #! end if
    pass
#! end while

dim_file = len(file_name)

#!======================================================================
#! Read input data:

data = list()
def read_spectra_output(file_name):

    #! Beware: Python lists start at index 0 whereas, by default,
    #! Fortran arrays start at index 1.

    data = struct_spectra_output()

    unit = open(file_name)

    data.version_id = miu.get_single_string(unit)

    data.version_date = miu.get_single_string(unit)

    row = miu.next_non_comment_line(unit)
    
    data.spectra_output = miu.clean_string(row.strip().replace('" ', '" , ').split(' , ')[0])
    
    if data.spectra_output == "detailed":
        data.RF_output = miu.get_single_boolean(unit)
        data.sublim_output = miu.get_single_boolean(unit)
    else:
        data.RF_output = False
        data.sublim_output = False
        pass
    #! end if
            
    data.time_step = miu.get_single_float(unit)
            
    dim_output_age = miu.get_single_int(unit)
    data.dim_output_age = dim_output_age

    data.dim_elem = miu.get_single_int(unit)
            
    data.elem_id = np.empty(data.dim_elem, dtype="object")
    row = unit.readline().strip().replace('" ', '" , ').split(' , ')
    for i_col in range(data.dim_elem):
        data.elem_id[i_col] = miu.clean_string(row[i_col])
        pass
    #! end for

    row = unit.readline()
    dim_species_SFC = int(row.split()[0])
    data.dim_species_SFC = dim_species_SFC
    dim_species_DISM = int(row.split()[1])
    data.dim_species_DISM = dim_species_DISM
            
    data.species_id_SFC = np.empty(dim_species_SFC, dtype="object")
    row = unit.readline().strip().replace('" ', '" , ').split(' , ')
    for i_col in range(dim_species_SFC):
        data.species_id_SFC[i_col] = miu.clean_string(row[i_col])
        pass
    #! end for

    data.species_id_DISM = np.empty(dim_species_DISM, dtype="object")
    row = unit.readline().strip().replace('" ', '" , ').split(' , ')
    for i_col in range(dim_species_DISM):
        data.species_id_DISM[i_col] = miu.clean_string(row[i_col])
        pass
    #! end for
            
    dim_cont = miu.get_single_int(unit)
    data.dim_cont = dim_cont

    dim_line = miu.get_single_int(unit)
    data.dim_line = dim_line

    miu.skip_row(unit)
    data.lambda_cont = np.empty(dim_cont, dtype="float")
    i_cont = 0
    while True:
        row = unit.readline().split()
        for i_col in range(len(row)):
            data.lambda_cont[i_cont] = float(row[i_col])
            i_cont = i_cont+1
            pass
        #! end for
        if i_cont == dim_cont: break
        pass
    #! end while
    
    miu.skip_row(unit)
    data.line_id = np.empty(dim_line, dtype="object")
    data.lambda_line = np.empty(dim_line, dtype="float")
    for i_row in range(dim_line):
        row = unit.readline().strip().replace('" ', '" , ').split(' , ')
        data.line_id[i_row] = miu.clean_string(row[0])
        data.lambda_line[i_row] = float(row[1])
        pass
    #! end for
    
    data.reserv_warn_present = miu.get_single_boolean(unit)
    data.SF_warn_present = miu.get_single_boolean(unit)

    if data.SF_warn_present:
        data.SF_warn_age = miu.get_single_float(unit)
        pass
    #! end if        

    data.dim_infall_warn = miu.get_single_int(unit)

    data.infall_warn_present = np.empty(dim_line, dtype="int") # Change name of variable???
    data.infall_warn_age = np.empty(dim_line, dtype="float")
    for i_row in range(data.dim_infall_warn):
        row = unit.readline().split()
        data.infall_warn_present[i_row] = int(row[0])
        data.infall_warn_age[i_row] = float(row[1])
        pass
    #! end for
        
    data.outflow_warn_present = miu.get_single_boolean(unit)
    if data.outflow_warn_present:
        data.outflow_warn_age = miu.get_single_float(unit)
        pass
    #! end if

    data.output_age = np.empty(dim_output_age, dtype="float")
    data.convol_time = np.empty(dim_output_age, dtype="float")
    data.cosmic_time = np.empty(dim_output_age, dtype="float")
    data.redshift = np.empty(dim_output_age, dtype="float")
    data.galaxy_mass = np.empty(dim_output_age, dtype="float")
    data.live_stars_mass = np.empty(dim_output_age, dtype="float")
    data.WD_mass = np.empty(dim_output_age, dtype="float")
    data.BHNS_mass = np.empty(dim_output_age, dtype="float")
    data.inert_mass = np.empty(dim_output_age, dtype="float")
    data.ISM_mass = np.empty(dim_output_age, dtype="float")
    data.ISM_Z = np.empty(dim_output_age, dtype="float")
    data.stel_Z_mass_avrg = np.empty(dim_output_age, dtype="float")
    data.stel_Z_bol_avrg = np.empty(dim_output_age, dtype="float")
    data.carb_abund = np.empty(dim_output_age, dtype="float")
    data.sil_abund = np.empty(dim_output_age, dtype="float")
    data.ISM_abund = np.empty((dim_output_age, data.dim_elem), dtype="float")
    data.L_bol = np.empty(dim_output_age, dtype="float")
    data.tau_V = np.empty(dim_output_age, dtype="float")
    data.L_dust = np.empty(dim_output_age, dtype="float")
    data.SF_rate = np.empty(dim_output_age, dtype="float")
    data.Lyman_cont_rate = np.empty(dim_output_age, dtype="float")
    data.CCSN_rate = np.empty(dim_output_age, dtype="float")
    data.SNIa_rate = np.empty(dim_output_age, dtype="float")
    data.stel_age_mass_avrg = np.empty(dim_output_age, dtype="float")
    data.stel_age_bol_avrg = np.empty(dim_output_age, dtype="float")
    data.Lyman_cont_gas_abs = np.empty(dim_output_age, dtype="float")
    data.Lyman_cont_dust_abs = np.empty(dim_output_age, dtype="float")
    data.ejec_rate_tot = np.empty(dim_output_age, dtype="float")
    data.infall_rate = np.empty(dim_output_age, dtype="float")
    data.outflow_rate = np.empty(dim_output_age, dtype="float")
    data.ejec_cumul_mass = np.empty(dim_output_age, dtype="float")
    data.SF_live_cumul_mass = np.empty(dim_output_age, dtype="float")
    data.infall_cumul_mass = np.empty(dim_output_age, dtype="float")
    data.outflow_cumul_mass = np.empty(dim_output_age, dtype="float")
    data.L_dust_SFC = np.empty(dim_output_age, dtype="float")
    data.L_dust_DISM = np.empty(dim_output_age, dtype="float")
    data.opt_depth_warn_present = np.empty(dim_output_age, dtype="object")
    data.opt_depth_warn_min_lambda = np.empty(dim_output_age, dtype="float")
    data.opt_depth_warn_max_lambda = np.empty(dim_output_age, dtype="float")
    data.lum_cont = np.empty((dim_output_age, dim_cont), dtype="float")
    data.L_line = np.empty((dim_output_age, dim_line), dtype="float")
    data.lum_stel_SFC_unatt \
        = np.empty((dim_output_age, dim_cont), dtype="float")
    data.lum_stel_DISM_unatt \
        = np.empty((dim_output_age, dim_cont), dtype="float")
    data.lum_neb_cont_SFC_unatt \
        = np.empty((dim_output_age, dim_cont), dtype="float")
    data.lum_neb_cont_DISM_unatt \
        = np.empty((dim_output_age, dim_cont), dtype="float")
    data.RF_cont_SFC = np.empty((dim_output_age, dim_cont), dtype="float")
    data.RF_cont_DISM = np.empty((dim_output_age, dim_cont), dtype="float")
    data.lum_species_SFC \
        = np.empty((dim_species_SFC, dim_output_age, dim_cont), dtype="float")
    data.lum_species_DISM \
        = np.empty((dim_species_SFC, dim_output_age, dim_cont), dtype="float")
    data.sublim_lum_species_SFC \
        = np.empty((dim_species_SFC, dim_output_age, dim_cont), dtype="float")
    data.sublim_lum_species_DISM \
        = np.empty((dim_species_SFC, dim_output_age, dim_cont), dtype="float")
    data.L_line_SFC_unatt = np.empty((dim_output_age, dim_line), dtype="float")
    data.L_line_DISM_unatt = np.empty((dim_output_age, dim_line), dtype="float")
    data.RF_line_SFC = np.empty((dim_output_age, dim_line), dtype="float")
    data.RF_line_DISM = np.empty((dim_output_age, dim_line), dtype="float")
    
    for i_time in range(dim_output_age):
        
        data.output_age[i_time] = miu.get_single_float(unit)

        data.convol_time[i_time] = miu.get_single_float(unit)

        data.cosmic_time[i_time] = miu.get_single_float(unit)
        
        data.redshift[i_time] = miu.get_single_float(unit)
        
        data.galaxy_mass[i_time] = miu.get_single_float(unit)

        data.live_stars_mass[i_time] = miu.get_single_float(unit)
        
        data.WD_mass[i_time] = miu.get_single_float(unit)
        
        data.BHNS_mass[i_time] = miu.get_single_float(unit)
        
        data.inert_mass[i_time] = miu.get_single_float(unit)
        
        data.ISM_mass[i_time] = miu.get_single_float(unit)
        
        data.ISM_Z[i_time] = miu.get_single_float(unit)
        
        data.stel_Z_mass_avrg[i_time] = miu.get_single_float(unit)
        
        data.stel_Z_bol_avrg[i_time] = miu.get_single_float(unit)
        
        data.carb_abund[i_time] = miu.get_single_float(unit)
        
        data.sil_abund[i_time] = miu.get_single_float(unit)
        
        row = unit.readline().split()
        for i_col in range(data.dim_elem):
            data.ISM_abund[i_time, i_col] = float(row[i_col])
            pass
        #! end for
 
        data.L_bol[i_time] = miu.get_single_float(unit)

        data.tau_V[i_time] = miu.get_single_float(unit)
        
        data.L_dust[i_time] = miu.get_single_float(unit)
        
        data.SF_rate[i_time] = miu.get_single_float(unit)
        
        data.Lyman_cont_rate[i_time] = miu.get_single_float(unit)
        
        data.CCSN_rate[i_time] = miu.get_single_float(unit)
        
        data.SNIa_rate[i_time] = miu.get_single_float(unit)
        
        data.stel_age_mass_avrg[i_time] = miu.get_single_float(unit)
        
        data.stel_age_bol_avrg[i_time] = miu.get_single_float(unit)
        
        data.Lyman_cont_gas_abs[i_time] = miu.get_single_float(unit)
        
        data.Lyman_cont_dust_abs[i_time] = miu.get_single_float(unit)
        
        data.ejec_rate_tot[i_time] = miu.get_single_float(unit)
        
        data.infall_rate[i_time] = miu.get_single_float(unit)
        
        data.outflow_rate[i_time] = miu.get_single_float(unit)
        
        data.ejec_cumul_mass[i_time] = miu.get_single_float(unit)
        
        data.SF_live_cumul_mass[i_time] = miu.get_single_float(unit)
        
        data.infall_cumul_mass[i_time] = miu.get_single_float(unit)
        
        data.outflow_cumul_mass[i_time] = miu.get_single_float(unit)
        
        data.L_dust_SFC[i_time] = miu.get_single_float(unit)
        
        data.L_dust_DISM[i_time] = miu.get_single_float(unit)
        
        data.opt_depth_warn_present[i_time] \
            = miu.get_single_boolean(unit)
        if data.opt_depth_warn_present[i_time]:
            data.opt_depth_warn_min_lambda[i_time] = miu.get_single_float(unit)
            data.opt_depth_warn_max_lambda[i_time] = miu.get_single_float(unit)
            pass
        #! end if

        if data.spectra_output == "detailed":
            miu.skip_row(unit)
            
            for i_cont in range(dim_cont):
                if data.RF_output:
                    row = unit.readline().split()
                    data.lum_cont[i_time, i_cont] = float(row[0])
                    data.lum_stel_SFC_unatt[i_time, i_cont] = float(row[1])
                    data.lum_stel_DISM_unatt[i_time, i_cont] = float(row[2])
                    data.lum_neb_cont_SFC_unatt[i_time, i_cont] = float(row[3])
                    data.lum_neb_cont_DISM_unatt[i_time, i_cont] = float(row[4])
                    data.RF_cont_SFC[i_time, i_cont] = float(row[5])
                    data.RF_cont_DISM[i_time, i_cont] = float(row[6])
                else:
                    row = unit.readline().split()
                    data.lum_cont[i_time, i_cont] = float(row[0])
                    data.lum_stel_SFC_unatt[i_time, i_cont] = float(row[1])
                    data.lum_stel_DISM_unatt[i_time, i_cont] = float(row[2])
                    data.lum_neb_cont_SFC_unatt[i_time, i_cont] = float(row[3])
                    data.lum_neb_cont_DISM_unatt[i_time, i_cont] = float(row[4])
                    pass
                #! end if
                pass
            #! end for

            miu.skip_row(unit)
            for i_cont in range(dim_cont):
                row = unit.readline().split()
                for i_col in range(dim_species_SFC):
                    data.lum_species_SFC[i_col, i_time, i_cont] \
                        = float(row[i_col])
                    pass
                #! end for
                for i_col in range(dim_species_DISM):
                    data.lum_species_DISM[i_col, i_time, i_cont] \
                        = float(row[dim_species_SFC+i_col])
                    pass
                #! end for
                pass
            #! end for

            if data.sublim_output:
                miu.skip_row(unit)
                for i_cont in range(dim_cont):
                    row = unit.readline().split()
                    for i_col in range(dim_species_SFC):
                        data.sublim_lum_species_SFC[i_col, i_time, i_cont] \
                            = float(row[i_col])
                        pass
                    #! end for
                    for i_col in range(dim_species_DISM):
                        data.sublim_lum_species_DISM[i_col, i_time, i_cont] \
                            = float(row[dim_species_SFC+i_col])
                        pass
                    #! end for
                    pass
                #! end for
                pass
            #! end if

            miu.skip_row(unit)
            for i_line in range(dim_line):
                if data.RF_output:
                    row = unit.readline().split()
                    data.L_line[i_time, i_line] = float(row[0])
                    data.L_line_SFC_unatt[i_time, i_line] = float(row[1])
                    data.L_line_DISM_unatt[i_time, i_line] = float(row[2])
                    data.RF_line_SFC[i_time, i_line] = float(row[3])
                    data.RF_line_DISM[i_time, i_line] = float(row[4])
                else:
                    row = unit.readline().split()
                    data.L_line[i_time, i_line] = float(row[0])
                    data.L_line_SFC_unatt[i_time, i_line] = float(row[1])
                    data.L_line_DISM_unatt[i_time, i_line] = float(row[2])
                    pass
                #! end if
                pass
            #! end for
        elif data.spectra_output == "basic":
            miu.skip_row(unit)
            i_cont = 0
            while True:
                row = unit.readline().split()
                for i_col in range(len(row)):
                    data.lum_cont[i_time, i_cont] = float(row[i_col])
                    i_cont = i_cont+1
                    pass
                #! end for
                if i_cont == dim_cont: break
                pass
            #! end for

            miu.skip_row(unit)
            i_line = 0
            while True:
                row = unit.readline().split()
                for i_col in range(len(row)):
                    data.L_line[i_time, i_line] = float(row[i_col])
                    i_line = i_line+1
                    pass
                #! end for
                if i_line == dim_line: break
                pass
            #! end while
        else:
            print("Wrong value for `spectra_output`. Stopped.")
            sys.exit()
            pass
        #! end if
        pass
    #! end for

    unit.close()

    return data
def read_grain_SED(file_name):

    #! Beware: Python lists start at index 0 whereas, by default,
    #! Fortran arrays start at index 1.
    #! Field named "lambda" in Fortran renamed "lambda_gr" in Python
    #! because Python's `lambda` is used to create anonymous functions
    #! (see Alonzo Church's "lambda calculus").
    
    data = struct_grain_SED()
    
    unit = open(file_name)

    data.version_id = miu.get_single_string(unit)

    data.version_date = miu.get_single_string(unit)

    row = miu.next_non_comment_line(unit).split()
    dim_age_grains = int(row[0])
    dim_region = int(row[1])
    data.dim_age_grains = dim_age_grains
    data.dim_region = dim_region
    
    data.age_grains = np.empty(dim_age_grains, dtype="float")
    data.region = np.empty(dim_region, dtype="object")

    for i_region in range(dim_region):
        data.region[i_region] = struct_grain_SED1()
        row = unit.readline().strip().replace('" ', '" , ').split(' , ')
        data.region[i_region].id = miu.clean_string(row[0])
        row = row[1].split()
        dim_species = int(row[0])
        data.region[i_region].stoch_heating = miu.boolean(row[1])
        data.region[i_region].dim_species = dim_species
        data.region[i_region].species = np.empty(dim_species, dtype="object")
        for i_species in range(dim_species):
            data.region[i_region].species[i_species] = struct_grain_SED2()
            row = unit.readline().strip().replace('" ', '" , ').split(' , ')
            data.region[i_region].species[i_species].id = miu.clean_string(row[0])
            dim_lambda = int(row[1])
            data.region[i_region].species[i_species].dim_lambda = dim_lambda
            data.region[i_region].species[i_species].lambda_gr \
                = np.empty(dim_lambda, dtype="float")
            i_lambda = 0
            while True:
                row = unit.readline().split()
                for i_col in range(len(row)):
                    data.region[i_region].species[i_species] \
                        .lambda_gr[i_lambda] = float(row[i_col])
                    i_lambda = i_lambda+1
                    pass
                #! end for
                if i_lambda == dim_lambda: break
                pass
            #! end while
            pass
        #! end for
        pass
    #! end for

    for i_age in range(dim_age_grains):
        for i_region in range(dim_region):
            data.age_grains[i_age] = miu.get_single_float(unit)
            eff_dim_species = miu.get_single_int(unit)
            if eff_dim_species > 0:
                for i_species in range(data.region[i_region].dim_species):
                    dim_radius = miu.get_single_int(unit)
                    data.region[i_region].species[i_species].dim_radius \
                        = dim_radius
                    if i_age == 0:
                        data.region[i_region].species[i_species] \
                            .radius = np.empty(dim_radius, dtype="float")
                        dim_lambda = data.region[i_region].species[i_species] \
                                     .dim_lambda
                        if data.region[i_region].stoch_heating:
                            data.region[i_region].species[i_species].lum_stoch \
                                = np.empty((dim_age_grains, dim_radius, \
                                            dim_lambda), dtype="float")
                            pass
                        #! end if
                        data.region[i_region].species[i_species].lum_eq \
                            = np.empty((dim_age_grains, dim_radius, \
                                        dim_lambda), dtype="float")

                        pass
                    #! end if
                    for i_radius in range(dim_radius):
                        data.region[i_region].species[i_species] \
                            .radius[i_radius] = miu.get_single_float(unit)
                        if data.region[i_region].stoch_heating:
                           i_lambda = 0
                           while True:
                               row = unit.readline().split()
                               for i_col in range(len(row)):
                                   data.region[i_region].species[i_species] \
                                       .lum_stoch[i_age, i_radius, i_lambda] \
                                       = float(row[i_col])
                                   i_lambda = i_lambda+1
                                   pass
                               #! end for
                               if i_lambda == dim_lambda: break
                               pass
                           #! end while
                           pass
                        #! end if
                        i_lambda = 0
                        while True:
                            row = unit.readline().split()
                            for i_col in range(len(row)):
                                data.region[i_region].species[i_species] \
                                    .lum_eq[i_age, i_radius, i_lambda] \
                                    = float(row[i_col])
                                i_lambda = i_lambda+1
                                pass
                            #! end for
                            if i_lambda == dim_lambda: break
                            pass
                        #! end while
                        pass
                    #! end do
                    pass
                #! end do
            else:
                pass
            #! end if
            pass
        #! end do
        pass
    #! end do

    unit.close()

    return data
def read_grain_temp(file_name):

    #! Beware: Python lists start at index 0 whereas, by default,
    #! Fortran arrays start at index 1.

    data = struct_grain_temp()

    unit = open(file_name)

    data.version_id = miu.get_single_string(unit)

    data.version_date = miu.get_single_string(unit)

    row = miu.next_non_comment_line(unit).split()
    dim_age_grains = int(row[0])
    dim_region = int(row[1])
    data.dim_age_grains = dim_age_grains
    data.dim_region = dim_region

    data.age_grains = np.empty(dim_age_grains, dtype="float")
    data.region = np.empty(dim_region, dtype="object")

    for i_region in range(dim_region):
        data.region[i_region] = struct_grain_temp1()
        row = unit.readline().strip().replace('" ', '" , ').split(' , ')
        data.region[i_region].id = miu.clean_string(row[0])
        row = row[1].split()
        dim_species = int(row[0])
        data.region[i_region].stoch_heating = miu.boolean(row[1])
        data.region[i_region].dim_species = dim_species
        data.region[i_region].species = np.empty(dim_species, dtype="object")
        for i_species in range(dim_species):
            data.region[i_region].species[i_species] = struct_grain_temp2()
            data.region[i_region].species[i_species].id \
                = miu.get_single_string(unit)
            pass
        #! end for
        pass
    #! end for

    for i_age in range(dim_age_grains):
        for i_region in range(dim_region):
            data.age_grains[i_age] = miu.get_single_float(unit)
            eff_dim_species = miu.get_single_int(unit)
            if eff_dim_species > 0:
                for i_species in range(data.region[i_region].dim_species):
                    dim_radius = miu.get_single_int(unit)
                    data.region[i_region].species[i_species].dim_radius \
                        = dim_radius
                    if i_age == 0:
                        data.region[i_region].species[i_species] \
                            .radius = np.empty(dim_radius, dtype="float")
                        data.region[i_region].species[i_species] \
                            .state = np.empty((dim_age_grains, dim_radius), \
                                              dtype="object")
                        pass
                    #! end if
                    for i_radius in range(dim_radius):
                        if data.region[i_region].stoch_heating:
                            row = unit.readline().split()
                            data.region[i_region].species[i_species] \
                                .radius[i_radius] = float(row[0])
                            data.region[i_region].species[i_species] \
                                .state[i_age, i_radius] = struct_grain_temp3()
                            data.region[i_region].species[i_species] \
                                .state[i_age, i_radius].temp_eq = float(row[1])
                            dim_temp = int(row[2])
                            data.region[i_region].species[i_species] \
                                .state[i_age, i_radius].dim_temp = dim_temp
                            data.region[i_region].species[i_species] \
                                .state[i_age, i_radius].temp \
                                = np.empty(dim_temp, dtype="float")
                            data.region[i_region].species[i_species] \
                                .state[i_age, i_radius].prob \
                                = np.empty(dim_temp, dtype="float")
                            for i_temp in range(dim_temp):
                                row = unit.readline().split()
                                data.region[i_region].species[i_species] \
                                    .state[i_age, i_radius].temp[i_temp] \
                                    = float(row[0])
                                data.region[i_region].species[i_species] \
                                    .state[i_age, i_radius].prob[i_temp] \
                                    = float(row[1])
                                pass
                            #! end for
                            pass
                        #!
                        else:
                            row = unit.readline().split()
                            data.region[i_region].species[i_species] \
                                .radius[i_radius] = float(row[0])
                            data.region[i_region].species[i_species] \
                                .state[i_age, i_radius] = struct_grain_temp3()
                            data.region[i_region].species[i_species] \
                                .state[i_age, i_radius].temp_eq = float(row[1])
                            pass
                        #! end if
                        pass
                    #! end do
                    pass
                #! end do
            else:
                pass
            #! end if
            pass
        #! end do
        pass
    #! end do

    unit.close()

    return data