Пример #1
0
def wdsr(scale, num_filters, num_res_blocks, res_block_expansion,
         res_block_scaling, res_block):
    """ WDSR model edited to be single channel uint16 
    """
    x_in = Input(shape=(None, None, 1))
    x = Lambda(normalize)(x_in)

    # main branch
    #    m = conv2d_weightnorm(num_filters, 3, padding='same')(x)
    m = conv2d_weightnorm(num_filters, 1, padding='same')(x)
    for i in range(num_res_blocks):
        m = res_block(m,
                      num_filters,
                      res_block_expansion,
                      kernel_size=3,
                      scaling=res_block_scaling)
    m = conv2d_weightnorm(1 * scale**2,
                          3,
                          padding='same',
                          name=f'conv2d_main_scale_{scale}')(m)
    m = Lambda(pixel_shuffle(scale))(m)

    # skip branch
    s = conv2d_weightnorm(1 * scale**2,
                          5,
                          padding='same',
                          name=f'conv2d_skip_scale_{scale}')(x)
    s = Lambda(pixel_shuffle(scale))(s)

    x = Add()([m, s])
    x = Lambda(denormalize)(x)

    return Model(x_in, x, name="wdsr")
Пример #2
0
def wdsr(scale, num_filters, num_res_blocks, res_block_expansion,
         res_block_scaling, res_block):
    x_in = Input(shape=(None, None, 3))
    x = Lambda(normalize)(x_in)

    # main branch
    m = Conv2D(num_filters, 3, padding='same')(x)
    for i in range(num_res_blocks):
        m = res_block(m,
                      num_filters,
                      res_block_expansion,
                      kernel_size=3,
                      scaling=res_block_scaling)
    m = Conv2D(3 * scale**2,
               3,
               padding='same',
               name=f'conv2d_main_scale_{scale}')(m)
    m = Lambda(pixel_shuffle(scale))(m)

    # skip branch
    s = Conv2D(3 * scale**2,
               5,
               padding='same',
               name=f'conv2d_skip_scale_{scale}')(x)
    s = Lambda(pixel_shuffle(scale))(s)

    x = Add()([m, s])
    x = Lambda(denormalize)(x)

    return Model(x_in, x, name="wdsr")
Пример #3
0
def upsampler(x, scale, num_feats, name):
    up_name = name
    _scale = int(math.log(scale,2))
    for i in range(_scale):
        x = Conv2D(num_feats*4, 3, padding='same', name=up_name+'/up'+str(i+1)+'/conv')(x)
        x = Lambda(pixel_shuffle(scale=2), name=up_name+'/up'+str(i+1)+'/pixel_shuffle')(x)
    return x
Пример #4
0
def upsampler_eusr(x, scale, num_feats, name):
    up_name = name
    _scale = int(math.log(scale,2))
    for i in range(_scale):
        x_list = list()
        for j in range(4):
            x = res_module(x, num_feats, num_res=1, name=up_name+'/up'+str(i+1)+'/rm'+str(j+1))
            x_list.append(x)
        x = concatenate(x_list, axis=3, name=up_name+'/up'+str(i+1)+'/concat')
        x = Lambda(pixel_shuffle(scale=2), name=up_name+'/up'+str(i+1)+'/pixel_shuffle')(x)
    return x
Пример #5
0
 def upsample_1(x, factor, **kwargs):
     x = Conv2D(num_filters * (factor**2), ks, padding='same', **kwargs)(x)
     return Lambda(pixel_shuffle(scale=factor))(x)
Пример #6
0
def upsample(x_in, num_filters):
    x = Conv2D(num_filters, kernel_size=3, padding='same')(x_in)
    x = Lambda(pixel_shuffle(scale=2))(x)
    return PReLU(shared_axes=[1, 2])(x)
Пример #7
0
def dscn(starting_num_filters=64,
         min_filters=24,
         filters_decay_gamma=1.5,
         nin_filters=64,
         n_fe_layers=8,
         scale=4):

    nin_filters2 = nin_filters // 2

    x_in = Input(shape=(None, None, 3))

    normalised = Lambda(normalize)(x_in)

    # Generate the 1st layer
    # layer_1 = conv2d_weightnorm(num_filters, 3, padding='same', , use_bias=True, activation=prelu_activation())(x_in)
    # layer_1 = conv2d_block(x_in, num_filters, 3, padding='same', initial_alpha=0.1)

    # conv_layers = [layer_1]

    ############################ Build feature extraction layers ###########################

    conv_layers = []
    total_filter_layers = 0
    previous_num_filters = starting_num_filters

    for layer_no in range(n_fe_layers):

        num_filters = int(
            max(previous_num_filters // filters_decay_gamma, min_filters))

        # Find the correct input layer
        input_layer = conv_layers[-1] if len(conv_layers) > 0 else normalised

        layer_n = conv2d_weightnorm(num_filters,
                                    3,
                                    padding='same',
                                    use_bias=True,
                                    activation=prelu_activation())(input_layer)

        conv_layers.append(layer_n)
        total_filter_layers += num_filters
        previous_num_filters = num_filters

    feature_extraction_layer = Concatenate(
        name="Feature_Extraction_Layer")(conv_layers)

    ######################### Build Reconstruction layers ##################################

    A1 = conv2d_weightnorm(
        nin_filters,
        1,
        padding='same',
        use_bias=True,
        activation=prelu_activation())(feature_extraction_layer)

    B1 = conv2d_weightnorm(
        nin_filters2,
        1,
        padding='same',
        use_bias=True,
        activation=prelu_activation())(feature_extraction_layer)

    B2 = conv2d_weightnorm(nin_filters2,
                           1,
                           padding='same',
                           use_bias=True,
                           activation=prelu_activation())(B1)

    reconstruction_layer = Concatenate(name="Reconstruction_Layer")([A1, B2])

    ######################### Upsampling Layer ############################################

    upsampled_conv = conv2d_weightnorm(3 * (scale**2),
                                       5,
                                       padding='same',
                                       use_bias=True)(reconstruction_layer)

    upsampled_layer = Lambda(pixel_shuffle(scale))(upsampled_conv)

    ######################## Reconstruction Layer ###########################################

    denormalised = Lambda(denormalize)(upsampled_layer)

    model = Model(x_in, denormalised, name="dscn")

    return model
Пример #8
0
 def upsample_1(x, factor, **kwargs):
     """Sub-pixel convolution."""
     x = Conv2D(num_filters * (factor**2), 3, padding='same', **kwargs)(x)
     return Lambda(pixel_shuffle(scale=factor))(x)