def testPerplexityOnRealData(self): dtype = np.float64 # DTYPE rd.seed(0xBADB055) data = DataSet.from_files(words_file=AclWordPath, links_file=AclCitePath) with open(AclDictPath, "rb") as f: d = pkl.load(f) data.convert_to_dtype(dtype) data.prune_and_shuffle(min_doc_len=MinDocLen, min_link_count=MinLinkCount) # IDF frequency for when we print out the vocab later freq = np.squeeze(np.asarray(data.words.sum(axis=0))) scale = np.reciprocal(1 + freq) # Initialise the model K = 50 model = mtm.newModelAtRandom(data, K, K - 1, dtype=dtype) queryState = mtm.newQueryState(data, model) trainPlan = mtm.newTrainPlan(iterations=200, logFrequency=10, fastButInaccurate=False, debug=True) # Train the model, and the immediately save the result to a file for subsequent inspection model, query, (bndItrs, bndVals, bndLikes) = mtm.train (data, model, queryState, trainPlan) # with open(newModelFileFromModel(model), "wb") as f: # pkl.dump ((model, query, (bndItrs, bndVals, bndLikes)), f) # Plot the evolution of the bound during training. fig, ax1 = plt.subplots() ax1.plot(bndItrs, bndVals, 'b-') ax1.set_xlabel('Iterations') ax1.set_ylabel('Bound', color='b') ax2 = ax1.twinx() ax2.plot(bndItrs, bndLikes, 'r-') ax2.set_ylabel('Likelihood', color='r') fig.show() plt.show() fig, ax1 = plt.subplots() ax1.imshow(model.topicCov, interpolation="nearest", cmap=cm.Greys_r) fig.show() plt.show() # Print out the most likely topic words # scale = np.reciprocal(1 + np.squeeze(np.array(data.words.sum(axis=0)))) vocab = mtm.wordDists(model) topWordCount = 10 kTopWordInds = [self.topWordInds(vocab[k,:], topWordCount) for k in range(K)] like = mtm.log_likelihood(data, model, query) perp = perplexity_from_like(like, data.word_count) print ("Prior %s" % (str(model.topicPrior))) print ("Perplexity: %f\n\n" % perp) for k in range(model.K): print("\nTopic %d\n=============================" % k) print("\n".join("%-20s\t%0.4f" % (d[kTopWordInds[k][c]], vocab[k][kTopWordInds[k][c]]) for c in range(topWordCount)))
def testOnRealData(self): dtype = np.float64 # DTYPE rd.seed(0xBADB055) data = DataSet.from_files(words_file=NipsWordsPath, links_file=NipsCitePath) with open(NipsDictPath, "rb") as f: d = pkl.load(f) data.convert_to_dtype(dtype) data.prune_and_shuffle(min_doc_len=50, min_link_count=0) # IDF frequency for when we print out the vocab later freq = np.squeeze(np.asarray(data.words.sum(axis=0))) scale = np.reciprocal(1 + freq) # Initialise the model K = 10 model = lda.newModelAtRandom(data, K, dtype=dtype) queryState = lda.newQueryState(data, model) trainPlan = lda.newTrainPlan(iterations=30, logFrequency=2, debug=False, batchSize=50, rate_retardation=1, forgetting_rate=0.75) # Train the model, and the immediately save the result to a file for subsequent inspection model, query, (bndItrs, bndVals, bndLikes) = lda.train (data, model, queryState, trainPlan) # with open(newModelFileFromModel(model), "wb") as f: # pkl.dump ((model, query, (bndItrs, bndVals, bndLikes)), f) # Plot the evolution of the bound during training. fig, ax1 = plt.subplots() ax1.plot(bndItrs, bndVals, 'b-') ax1.set_xlabel('Iterations') ax1.set_ylabel('Bound', color='b') ax2 = ax1.twinx() ax2.plot(bndItrs, bndLikes, 'r-') ax2.set_ylabel('Likelihood', color='r') fig.show() plt.show() vocab = lda.wordDists(model) plt.imshow(vocab, interpolation="nearest", cmap=cm.Greys_r) plt.show() # Print out the most likely topic words topWordCount = 100 kTopWordInds = [topWordIndices(vocab[k, :] * scale, topWordCount) \ for k in range(K)] # Print out the most likely topic words print("Prior %s" % (str(model.topicPrior))) print("Perplexity: %f\n\n" % word_perplexity(lda.log_likelihood, model, query, data)) print("") printWordDists(K, lda.wordDists(model), d)
def testPerplexityOnRealDataWithLdaInc(self): dtype = np.float64 # DTYPE rd.seed(0xBADB055) data = DataSet.from_files(words_file=AclWordPath, links_file=AclCitePath) with open(AclDictPath, "rb") as f: d = pkl.load(f) data.convert_to_dtype(dtype) data.prune_and_shuffle(min_doc_len=MinDocLen, min_link_count=MinLinkCount) # IDF frequency for when we print out the vocab later freq = np.squeeze(np.asarray(data.words.sum(axis=0))) scale = np.reciprocal(1 + freq) # Initialise the model topicCounts = [5, 10, 15, 20, 25, 30, 35, 40, 45, 50] perps = [] for K in topicCounts: model = lda.newModelAtRandom(data, K, dtype=dtype) queryState = lda.newQueryState(data, model) trainPlan = lda.newTrainPlan(iterations=800, logFrequency=10, fastButInaccurate=False, debug=False) # Train the model, and the immediately save the result to a file for subsequent inspection model, query, (bndItrs, bndVals, bndLikes) = lda.train (data, model, queryState, trainPlan) # with open(newModelFileFromModel(model), "wb") as f: # pkl.dump ((model, query, (bndItrs, bndVals, bndLikes)), f) # Print out the most likely topic words # scale = np.reciprocal(1 + np.squeeze(np.array(data.words.sum(axis=0)))) # vocab = lda.wordDists(model) # topWordCount = 10 # kTopWordInds = [self.topWordInds(vocab[k,:], topWordCount) for k in range(K)] like = lda.log_likelihood(data, model, query) perp = perplexity_from_like(like, data.word_count) perps.append(perp) print ("K = %2d : Perplexity = %f\n\n" % (K, perp)) # # for k in range(model.K): # print("\nTopic %d\n=============================" % k) # print("\n".join("%-20s\t%0.4f" % (d[kTopWordInds[k][c]], vocab[k][kTopWordInds[k][c]]) for c in range(topWordCount))) # Plot the evolution of the bound during training. fig, ax1 = plt.subplots() ax1.plot(topicCounts, perps, 'b-') ax1.set_xlabel('Topic Count') ax1.set_ylabel('Perplexity', color='b') fig.show() plt.show()
def testCrossValPerplexityOnRealDataWithLdaGibbsInc(self): ActiveFolds = 3 dtype = np.float64 # DTYPE rd.seed(0xBADB055) data = DataSet.from_files(words_file=AclWordPath, links_file=AclCitePath) data.convert_to_dtype(np.int32) # Gibbs expects integers as input, regardless of model dtype data.prune_and_shuffle(min_doc_len=MinDocLen, min_link_count=MinLinkCount) # Training setup TrainSamplesPerTopic = 10 QuerySamplesPerTopic = 2 Thin = 2 Debug = False # Start running experiments topicCounts = [5, 10, 15, 20, 25, 30, 35, 40, 45, 50] for K in topicCounts: trainPlan = lda_gibbs.newTrainPlan(K * TrainSamplesPerTopic, thin=Thin, debug=Debug) queryPlan = lda_gibbs.newTrainPlan(K * QuerySamplesPerTopic, thin=Thin, debug=Debug) trainPerps = [] queryPerps = [] for fold in range(ActiveFolds): # range(NumFolds): trainData, queryData = data.cross_valid_split(fold, NumFolds) estData, evalData = queryData.doc_completion_split() model = lda_gibbs.newModelAtRandom(trainData, K, dtype=dtype) query = lda_gibbs.newQueryState(trainData, model) # Train the model, and the immediately save the result to a file for subsequent inspection model, trainResult, (_, _, _) = lda_gibbs.train (trainData, model, query, trainPlan) like = lda_gibbs.log_likelihood(trainData, model, trainResult) perp = perplexity_from_like(like, trainData.word_count) trainPerps.append(perp) query = lda_gibbs.newQueryState(estData, model) _, queryResult = lda_gibbs.query(estData, model, query, queryPlan) like = lda_gibbs.log_likelihood(evalData, model, queryResult) perp = perplexity_from_like(like, evalData.word_count) queryPerps.append(perp) trainPerps.append(sum(trainPerps) / ActiveFolds) queryPerps.append(sum(queryPerps) / ActiveFolds) print("K=%d,Segment=Train,%s" % (K, ",".join([str(p) for p in trainPerps]))) print("K=%d,Segment=Query,%s" % (K, ",".join([str(p) for p in queryPerps])))
def testCrossValPerplexityOnRealDataWithLdaInc(self): ActiveFolds = 3 dtype = np.float64 # DTYPE rd.seed(0xBADB055) data = DataSet.from_files(words_file=AclWordPath, links_file=AclCitePath) data.convert_to_dtype(dtype) data.prune_and_shuffle(min_doc_len=MinDocLen, min_link_count=MinLinkCount) # Initialise the model trainPlan = lda.newTrainPlan(iterations=800, logFrequency=10, fastButInaccurate=False, debug=False) queryPlan = lda.newTrainPlan(iterations=50, logFrequency=5, fastButInaccurate=False, debug=False) topicCounts = [30, 35, 40, 45, 50] # [5, 10, 15, 20, 25, 30, 35, 40, 45, 50] for K in topicCounts: trainPerps = [] queryPerps = [] for fold in range(ActiveFolds): # range(NumFolds): trainData, queryData = data.cross_valid_split(fold, NumFolds) model = lda.newModelAtRandom(trainData, K, dtype=dtype) query = lda.newQueryState(trainData, model) # Train the model, and the immediately save the result to a file for subsequent inspection model, trainResult, (_, _, _) = lda.train (trainData, model, query, trainPlan) like = lda.log_likelihood(trainData, model, trainResult) perp = perplexity_from_like(like, trainData.word_count) trainPerps.append(perp) estData, evalData = queryData.doc_completion_split() query = lda.newQueryState(estData, model) model, queryResult = lda.query(estData, model, query, queryPlan) like = lda.log_likelihood(evalData, model, queryResult) perp = perplexity_from_like(like, evalData.word_count) queryPerps.append(perp) trainPerps.append(sum(trainPerps) / ActiveFolds) queryPerps.append(sum(queryPerps) / ActiveFolds) print("K=%d,Segment=Train,%s" % (K, ",".join([str(p) for p in trainPerps]))) print("K=%d,Segment=Query,%s" % (K, ",".join([str(p) for p in queryPerps])))
def testOnRealData(self): dtype = np.float64 # DTYPE rd.seed(0xBADB055) data = DataSet.from_files(words_file=TNewsWordsPath) with open(TNewsDictPath, "rb") as f: d = pkl.load(f) data.convert_to_dtype(dtype) data.prune_and_shuffle(min_doc_len=50, min_link_count=0) # Initialise the model K = 6 model = mom.newModelAtRandom(data, K, dtype=dtype) queryState = mom.newQueryState(data, model) # trainPlan = mom.newTrainPlan(iterations=1000, logFrequency=10, debug=False, burnIn=1000, thinning=10) trainPlan = mom.newTrainPlan(iterations=200, logFrequency=10, debug=False) # Train the model, and the immediately save the result to a file for subsequent inspection model, query, (bndItrs, bndVals, bndLikes) = mom.train (data, model, queryState, trainPlan) # with open(newModelFileFromModel(model), "wb") as f: # pkl.dump ((model, query, (bndItrs, bndVals, bndLikes)), f) # Plot the evolution of the bound during training. fig, ax1 = plt.subplots() ax1.plot(bndItrs, bndVals, 'b-') ax1.set_xlabel('Iterations') ax1.set_ylabel('Bound', color='b') ax2 = ax1.twinx() ax2.plot(bndItrs, bndLikes, 'r-') ax2.set_ylabel('Likelihood', color='r') fig.show() plt.show() # Print out the most likely topic words print ("Prior %s" % (str(model.topicPrior))) print ("Perplexity: %f\n\n" % word_perplexity(mom.log_likelihood, model, query, data)) print ("") printWordDists(K, mom.wordDists(model), d)
def testMapOnRealData(self): dtype = np.float64 # DTYPE rd.seed(0xBADB055) data = DataSet.from_files(words_file=AclWordPath, links_file=AclCitePath) with open(AclDictPath, "rb") as f: dic = pkl.load(f) data.convert_to_dtype(dtype) data.convert_to_undirected_graph() data.convert_to_binary_link_matrix() data.prune_and_shuffle(min_doc_len=MinDocLen, min_link_count=MinLinkCount) trainData, testData = data.doc_completion_split() for pseudoNegCount in (5, 10, 25, 50, 100): rd.seed(0xC0FFEE) # Initialise the model K = TopicCount model = rtm.newModelAtRandom(trainData, K, dtype=dtype, pseudoNegCount=data.doc_count * pseudoNegCount) queryState = rtm.newQueryState(trainData, model) trainPlan = rtm.newTrainPlan(iterations=50, logFrequency=LogFreq, fastButInaccurate=False, debug=True) # Train the model, and the immediately save the result to a file for subsequent inspection model, topics, (bndItrs, bndVals, bndLikes) = rtm.train(trainData, model, queryState, trainPlan) # with open(newModelFileFromModel(model), "wb") as f: # pkl.dump ((model, query, (bndItrs, bndVals, bndLikes)), f) # Plot the evolution of the bound during training. fig, ax1 = plt.subplots() ax1.plot(bndItrs, bndVals, 'b-') ax1.set_xlabel('Iterations') ax1.set_ylabel('Bound', color='b') ax2 = ax1.twinx() ax2.plot(bndItrs, bndLikes, 'r-') ax2.set_ylabel('Likelihood', color='r') fig.show() plt.show() # Print out the most likely topic words # scale = np.reciprocal(1 + np.squeeze(np.array(data.words.sum(axis=0)))) vocab = rtm.wordDists(model) topWordCount = 10 kTopWordInds = [self.topWordInds(vocab[k, :], topWordCount) for k in range(K)] like = rtm.log_likelihood(trainData, model, topics) perp = perplexity_from_like(like, trainData.word_count) # print ("Prior %s" % (str(model.topicPrior))) print ("Pseudo Neg-Count: %d " % pseudoNegCount) print ("\tTrain Perplexity: %f\n\n" % perp) # for k in range(model.K): # print ("\nTopic %d\n=============================" % k) # print ("\n".join("%-20s\t%0.4f" % (dic[kTopWordInds[k][c]], vocab[k][kTopWordInds[k][c]]) for c in range(topWordCount))) min_probs = rtm.min_link_probs(model, topics, testData.links) link_probs = rtm.link_probs(model, topics, min_probs) try: map = mean_average_prec(testData.links, link_probs) except: print ("Unexpected error") print("\tThe Mean-Average-Precision is %.3f" % map)
def testPerplexityOnRealDataWithMtm2(self): dtype = np.float64 # DTYPE rd.seed(0xBADB055) data = DataSet.from_files(words_file=AclWordPath, links_file=AclCitePath) with open(AclDictPath, "rb") as f: d = pkl.load(f) data.convert_to_dtype(dtype) data.prune_and_shuffle(min_doc_len=MinDocLen, min_link_count=MinLinkCount) # IDF frequency for when we print out the vocab later freq = np.squeeze(np.asarray(data.words.sum(axis=0))) scale = np.reciprocal(1 + freq) # Initialise the model K = 30 # TopicCount model = mtm2.newModelAtRandom(data, K, dtype=dtype) queryState = mtm2.newQueryState(data, model) trainPlan = mtm2.newTrainPlan(iterations=200, logFrequency=10, fastButInaccurate=False, debug=False) # Train the model, and the immediately save the result to a file for subsequent inspection model, query, (bndItrs, bndVals, bndLikes) = mtm2.train(data, model, queryState, trainPlan) # with open(newModelFileFromModel(model), "wb") as f: # pkl.dump ((model, query, (bndItrs, bndVals, bndLikes)), f) # Plot the evolution of the bound during training. fig, ax1 = plt.subplots() ax1.plot(bndItrs, bndVals, 'b-') ax1.set_xlabel('Iterations') ax1.set_ylabel('Bound', color='b') ax2 = ax1.twinx() ax2.plot(bndItrs, bndLikes, 'r-') ax2.set_ylabel('Likelihood', color='r') fig.show() plt.show() fig, ax1 = plt.subplots() ax1.imshow(model.topicCov, interpolation="nearest", cmap=cm.Greys_r) fig.show() plt.show() # Print out the most likely topic words # scale = np.reciprocal(1 + np.squeeze(np.array(data.words.sum(axis=0)))) vocab = mtm2.wordDists(model) topWordCount = 10 kTopWordInds = [self.topWordInds(vocab[k,:], topWordCount) for k in range(K)] like = mtm2.log_likelihood(data, model, query) perp = perplexity_from_like(like, data.word_count) print("Perplexity: %f\n\n" % perp) for k in range(model.K): print("\nTopic %d\n=============================" % k) print("\n".join("%-20s\t%0.4f" % (d[kTopWordInds[k][c]], vocab[k][kTopWordInds[k][c]]) for c in range(topWordCount))) print ("Most likely documents for each topic") print ("====================================") with open ("/Users/bryanfeeney/iCloud/Datasets/ACL/ACL.100/doc_ids.pkl", 'rb') as f: fileIds = pkl.load (f) docs_dict = [fileIds[fi] for fi in data.order] for k in range(model.K): arg_max_prob = np.argmax(query.means[:, k]) print("K=%2d Document ID = %s (found at %d)" % (k, docs_dict[arg_max_prob], arg_max_prob)) print ("Done") with open ("/Users/bryanfeeney/Desktop/mtm2-" + str(K) + ".pkl", "wb") as f: pkl.dump((model, query), f)
def run(args): ''' Parses the command-line arguments (excluding the application name portion). Executes a cross-validation run accordingly, saving the output at the end of each run. Returns the list of files created. ''' # # Enumerate all possible arguments # parser = ap.ArgumentParser(description='Execute a topic-modeling run.') parser.add_argument('--model', '-m', dest='model', metavar=' ', \ help='The type of mode to use, options are ' + ModelNames) parser.add_argument('--num-topics', '-k', dest='K', type=int, metavar=' ', \ help='The number of topics to fit') parser.add_argument('--num-lat-topics', '-q', dest='Q', type=int, metavar=' ', \ help='The number of latent topics (i.e. rank of the topic covariance matrix)') parser.add_argument('--num-lat-feats', '-p', dest='P', type=int, metavar=' ', \ help='The number of latent features (i.e. rank of the features covariance matrix)') parser.add_argument('--words', '-w', dest='words', metavar=' ', \ help='The path to the pickle file containing a DxT array or matrix of the word-counts across all D documents') parser.add_argument('--feats', '-x', dest='feats', metavar=' ', \ help='The path to the pickle file containing a DxF array or matrix of the features across all D documents') parser.add_argument('--links', '-c', dest='links', metavar=' ', \ help='The path to the pickle file containing a DxP array or matrix of the links (citations) emanated by all D documents') parser.add_argument('--eval', '-v', dest='eval', default=Perplexity, metavar=' ', \ help='Evaluation metric, available options are: ' + ','.join(EvalNames)) parser.add_argument('--out-model', '-o', dest='out_model', default=None, metavar=' ', \ help='Optional output path in which to store the model') parser.add_argument('--log-freq', '-l', dest='log_freq', type=int, default=10, metavar=' ', \ help='Log frequency - how many times to inspect the bound while running') parser.add_argument('--iters', '-i', dest='iters', type=int, default=500, metavar=' ', \ help='The maximum number of iterations to run when training') parser.add_argument('--query-iters', '-j', dest='query_iters', type=int, default=100, metavar=' ', \ help='The maximum number of iterations to run when querying, by default same as when training') parser.add_argument('--min-vb-change', '-e', dest='min_vb_change', type=float, default=1, metavar=' ', \ help='The amount by which the variational bound must change at each log-interval to avoid inference being stopped early.') parser.add_argument('--topic-var', dest='topic_var', type=float, default=DefaultPriorCov, metavar=' ', \ help="Scale of the prior isotropic variance over topics") parser.add_argument('--feat-var', dest='feat_var', type=float, default=DefaultPriorCov, metavar=' ', \ help="Scale of the prior isotropic variance over features") parser.add_argument('--lat-topic-var', dest='lat_topic_var', type=float, default=DefaultPriorCov, metavar=' ', \ help="Scale of the prior isotropic variance over latent topics") parser.add_argument('--lat-feat-var', dest='lat_feat_var', type=float, default=DefaultPriorCov, metavar=' ', \ help="Scale of the prior isotropic variance over latent features") parser.add_argument('--vocab-prior', dest='vocabPrior', type=float, default=1.1, metavar=' ', \ help="Symmetric prior over the vocabulary") parser.add_argument('--folds', '-f', dest='folds', type=int, default=1, metavar=' ', \ help="Number of cross validation folds.") parser.add_argument('--truncate-folds', dest='eval_fold_count', type=int, default=-1, metavar=' ', \ help="If set, stop running after the given number of folds had been processed") parser.add_argument('--debug', '-b', dest='debug', type=bool, default=False, metavar=' ', \ help="Display a debug message, with the bound, after every variable update") parser.add_argument('--dtype', '-t', dest='dtype', default="f4:f4", metavar=' ', \ help="Datatype to use, values are i4, f4 and f8. Specify two, a data dtype and model dtype, delimited by a colon") parser.add_argument('--limit-to', dest='limit', type=int, default=0, metavar=' ', \ help="If set, discard all but the initial given number of rows of the input dataset") parser.add_argument('--word-dict', dest='word_dict', default=None, metavar=' ', \ help='A dictionary of all words. Used to identify hashtag indices') parser.add_argument('--lda-model', dest='ldaModel', default=None, metavar=' ', \ help='A trained LDA model, used with the LRO model') parser.add_argument('--feats-mask', dest='features_mask_str', default=None, metavar=' ', \ help='Feature mask to use with FeatSplit runs, comma-delimited list of colon-delimited pairs') # # Initialization of the app: first parse the arguments # print("Random seed is 0xC0FFEE") rd.seed(0xC0FFEE) print("Args are : " + str(args)) args = parser.parse_args(args) K, P, Q = args.K, args.P, args.Q features_mask = parse_features_mask(args) (input_dtype, output_dtype) = parse_dtypes(args.dtype) fv, tv, lfv, ltv = args.feat_var, args.topic_var, args.lat_feat_var, args.lat_topic_var # # Load and prune the data # data = DataSet.from_files(args.words, args.feats, args.links, limit=args.limit) data.convert_to_dtype(input_dtype) data.prune_and_shuffle(min_doc_len=3, min_link_count=MinLinkCountPrune) print ("The combined word-count of the %d documents is %.0f, drawn from a vocabulary of %d distinct terms" % (data.doc_count, data.word_count, data.words.shape[1])) if data.add_intercept_to_feats_if_required(): print ("Appended an intercept to the given features") # # Instantiate and configure the model # if args.ldaModel is not None: ldaModel, ldaTopics = load_and_adapt_lda_model(args.ldaModel, data.order) else: ldaModel, ldaTopics = None, None print ("Building template model... ", end="") if args.model == CtmBouchard: import model.ctm as mdl templateModel = mdl.newModelAtRandom(data, K, args.vocabPrior, dtype=output_dtype) elif args.model == CtmBohning: import model.ctm_bohning as mdl templateModel = mdl.newModelAtRandom(data, K, args.vocabPrior, dtype=output_dtype) elif args.model == StmYvBouchard: import model.stm_yv as mdl templateModel = mdl.newModelAtRandom(data, P, K, fv, lfv, args.vocabPrior, dtype=output_dtype) elif args.model == StmYvBohning: import model.stm_yv_bohning as mdl templateModel = mdl.newModelAtRandom(data, P, K, fv, lfv, args.vocabPrior, dtype=output_dtype) elif args.model == StmYvBohningFakeOnline: import model.stm_yv_bohning_fake_online as mdl templateModel = mdl.newModelAtRandom(data, P, K, fv, lfv, args.vocabPrior, dtype=output_dtype) elif args.model == StmUyvBohning: import model.stm_uv_vec_y_bohning as mdl templateModel = mdl.newModelAtRandom(data, K=K, Q=Q, P=P, tv=tv, ltv=ltv, fv=fv, lfv=lfv, vocabPrior=args.vocabPrior, dtype=output_dtype) elif args.model == LdaCvbZero: import model.lda_cvb as mdl templateModel = mdl.newModelAtRandom(data, K, dtype=output_dtype) elif args.model == LdaVb: import model.lda_vb_python as mdl templateModel = mdl.newModelAtRandom(data, K, args.vocabPrior, dtype=output_dtype) elif args.model == LdaGibbs: import model.lda_gibbs as mdl templateModel = mdl.newModelAtRandom(data, K, dtype=output_dtype) elif args.model == Rtm: import model.rtm as mdl templateModel = mdl.newModelAtRandom(data, K, dtype=output_dtype) elif args.model == Mtm: import model.mtm2 as mdl templateModel = mdl.newModelAtRandom(data, K, dtype=output_dtype) elif args.model == Mtm2: import model.mtm3 as mdl templateModel = mdl.newModelAtRandom(data, K, dtype=output_dtype) elif args.model == Dmr: import model.dmr as mdl templateModel = mdl.newModelAtRandom(data, K, dtype=output_dtype) elif args.model == Lro: import model.lro_vb as mdl templateModel = mdl.newModelAtRandom(data, K, dtype=output_dtype) elif args.model == SimLda: import model.sim_based_rec as mdl templateModel = mdl.newModelAtRandom(data, K, method=mdl.LDA, dtype=output_dtype) elif args.model == SimTfIdf: import model.sim_based_rec as mdl templateModel = mdl.newModelAtRandom(data, K, method=mdl.TF_IDF, dtype=output_dtype) else: raise ValueError ("Unknown model identifier " + args.model) print("Done") trainPlan = mdl.newTrainPlan(args.iters, debug=args.debug) queryPlan = mdl.newTrainPlan(args.query_iters, debug=args.debug) if args.eval == Perplexity: return cross_val_and_eval_perplexity(data, mdl, templateModel, trainPlan, queryPlan, args.folds, args.eval_fold_count, args.out_model) elif args.eval == HashtagPrecAtM: return cross_val_and_eval_hashtag_prec_at_m(data, mdl, templateModel, trainPlan, load_dict(args.word_dict), args.folds, args.eval_fold_count, args.out_model) elif args.eval == MeanAveragePrecAllDocs: return link_split_map (data, mdl, templateModel, trainPlan, args.folds, args.out_model) elif args.eval == MeanPrecRecAtMAllDocs: return link_split_prec_rec (data, mdl, templateModel, trainPlan, args.folds, args.eval_fold_count, args.out_model, ldaModel, ldaTopics) elif args.eval == LroMeanPrecRecAtMAllDocs: return insample_lro_style_prec_rec (data, mdl, templateModel, trainPlan, args.folds, args.eval_fold_count, args.out_model, ldaModel, ldaTopics) elif args.eval == LroMeanPrecRecAtMFeatSplit: return outsample_lro_style_prec_rec (data, mdl, templateModel, trainPlan, features_mask, args.out_model, ldaModel, ldaTopics) else: raise ValueError("Unknown evaluation metric " + args.eval) return modelFiles