Пример #1
0
    if args.net == 'vgg16':
        fasterRCNN = vgg16(imdb.classes,
                           pretrained=True,
                           class_agnostic=args.class_agnostic,
                           lc=args.lc)
    elif args.net == 'res101':
        fasterRCNN = resnet(imdb.classes,
                            101,
                            pretrained=True,
                            class_agnostic=args.class_agnostic,
                            lc=args.lc)
    elif args.net == 'prefood':
        fasterRCNN = PreResNet50Attention(imdb.classes,
                                          pretrained=True,
                                          class_agnostic=args.class_agnostic,
                                          lc=args.lc,
                                          gc=False)

    else:
        print("network is not defined")
        pdb.set_trace()

    fasterRCNN.create_architecture()

    lr = cfg.TRAIN.LEARNING_RATE
    lr = args.lr
    # tr_momentum = cfg.TRAIN.MOMENTUM
    # tr_momentum = args.momentum

    params = []
def init_network(args):

    # initilize the network here.
    if args.net == 'vgg16':
        fasterRCNN = vgg16(imdb.classes,
                           pretrained=args.pretrained,
                           class_agnostic=args.class_agnostic)
    elif args.net == 'res101':
        fasterRCNN = resnet(imdb.classes,
                            101,
                            pretrained=args.pretrained,
                            class_agnostic=args.class_agnostic)
    elif args.net == 'res50':
        fasterRCNN = resnet(imdb.classes,
                            50,
                            pretrained=args.pretrained,
                            class_agnostic=args.class_agnostic)
    elif args.net == 'res152':
        fasterRCNN = resnet(imdb.classes,
                            152,
                            pretrained=args.pretrained,
                            class_agnostic=args.class_agnostic)
    elif args.net == 'foodres50':
        fasterRCNN = PreResNet50(imdb.classes,
                                 pretrained=args.pretrained,
                                 class_agnostic=args.class_agnostic,
                                 weight_file=args.weight_file,
                                 fixed_layer=args.fixed_layer)

    elif args.net == 'foodres50attention':
        fasterRCNN = PreResNet50Attention(imdb.classes,
                                          pretrained=args.pretrained,
                                          class_agnostic=args.class_agnostic,
                                          weight_file=args.weight_file,
                                          fixed_layer=args.fixed_layer)

    elif args.net == 'foodres502fc':
        fasterRCNN = PreResNet502Fc(imdb.classes,
                                    pretrained=args.pretrained,
                                    class_agnostic=args.class_agnostic,
                                    weight_file=args.weight_file,
                                    fixed_layer=args.fixed_layer)

    elif args.net == 'foodres50meta':
        fasterRCNN = PreResNet50Meta([0 for _ in range(170)],
                                     pretrained=args.pretrained,
                                     class_agnostic=args.class_agnostic,
                                     weight_file=args.weight_file,
                                     fixed_layer=args.fixed_layer)

    elif args.net == 'foodres50_hierarchy':
        main_classes = get_main_cls(imdb.classes)
        fasterRCNN = PreResNet50Hierarchy(main_classes,
                                          imdb.classes,
                                          pretrained=args.pretrained,
                                          class_agnostic=args.class_agnostic,
                                          weight_file=args.weight_file,
                                          fixed_layer=args.fixed_layer)
    elif 'foodres50_hierarchy_casecade' in args.net:
        nets_param = args.net.split('_')
        if len(nets_param) == 3:
            casecade_type = 'add_score'
            alpha = 0.5
        elif len(nets_param) == 5:
            casecade_type = "".join(nets_param[3:5])
            alpha = 0.5
        elif len(nets_param) == 6:
            casecade_type = "".join(nets_param[3:5])
            alpha = float(nets_param[5])

        main_classes = get_main_cls(imdb.classes)
        fasterRCNN = PreResNet50HierarchyCasecade(
            main_classes,
            imdb.classes,
            pretrained=args.pretrained,
            class_agnostic=args.class_agnostic,
            weight_file=args.weight_file,
            fixed_layer=args.fixed_layer,
            casecade_type=casecade_type,
            alpha=alpha)
    else:
        print("network is not defined")
        pdb.set_trace()

    return fasterRCNN
Пример #3
0
                            pretrained=True,
                            class_agnostic=args.class_agnostic,
                            lc=args.lc,
                            gc=args.gc)

    elif args.net == 'res50':
        fasterRCNN = resnet(imdb.classes,
                            50,
                            pretrained=True,
                            class_agnostic=args.class_agnostic,
                            context=args.context)

    elif args.net == 'prefood':
        fasterRCNN = PreResNet50Attention(imdb.classes,
                                          pretrained=True,
                                          class_agnostic=args.class_agnostic,
                                          fixed_layer=args.fixed_layer,
                                          lc=args.lc,
                                          gc=args.gc)

    else:
        print("network is not defined")
        pdb.set_trace()

    fasterRCNN.create_architecture()

    lr = cfg.TRAIN.LEARNING_RATE
    lr = args.lr
    # tr_momentum = cfg.TRAIN.MOMENTUM
    # tr_momentum = args.momentum

    params = []