default=None,
                    help="Pretrained vgg16 weight path.")

args = parser.parse_args()
model_name = args.model
TRAIN_BATCH = args.train_batch
VAL_BATCH = args.val_batch
lr_init = args.lr_init
lr_decay = args.lr_decay
vgg_path = args.vgg
config = Config()
labels = 2
if model_name == "fcn":
    model = fcn_8s(input_shape=(256, 256, 7),
                   num_classes=labels,
                   lr_init=lr_init,
                   lr_decay=lr_decay,
                   vgg_weight_path=vgg_path)
elif model_name == "unet":
    model = unet(input_shape=(256, 256, 7),
                 num_classes=labels,
                 lr_init=lr_init,
                 lr_decay=lr_decay,
                 vgg_weight_path=vgg_path)
elif model_name == "pspnet":
    model = pspnet50(input_shape=(256, 256, 7),
                     num_classes=labels,
                     lr_init=lr_init,
                     lr_decay=lr_decay)
elif model_name == "deeplabv3p":
    model = Deeplabv3(input_shape=(256, 256, 3), classes=labels)
Пример #2
0
# testing image's path
img_path = './BUS/data2/wavelet/Case81.png'
# label path
label_path = './BUS/data2/GT/Case81.png'

# input size
img_width = 128
img_height = 128
nb_class = 2
channels = 3


# Create model
print('Creating network...\n')
if model_name == "fcn":
    model = fcn_8s(input_shape=(img_height, img_width, channels), num_classes=nb_class,
                   lr_init=1e-3, lr_decay=5e-4, vgg_weight_path=vgg_path)
elif model_name == "unet":
    model = unet(input_shape=(img_height, img_width, channels), num_classes=nb_class,
                 lr_init=1e-3, lr_decay=5e-4, vgg_weight_path=vgg_path)
elif model_name == "fuzzyunet":
    model = fuzzy_unet(input_shape=(img_height, img_width, channels), num_classes=nb_class,
                 lr_init=1e-3, lr_decay=5e-4, vgg_weight_path=vgg_path)
elif model_name == "pspnet":
    model = pspnet50(input_shape=(img_height, img_width, channels), num_classes=nb_class, lr_init=1e-3, lr_decay=5e-4)

# load weights
try:
    model.load_weights(model_name + '_model_weight.h5')
except:
    print("You must train model and get weight before test.")
Пример #3
0
    argmax_idx = np.argmax(res_map, axis=2)
    # For np.where calculation.
    lake = (argmax_idx == 1)
    img[:, :, 0] = np.where(lake, 255, 0)
    return img

model_name = 'fcn'
img_path = './img/test-512.tif'

# Use only 2 classes.
labels = ['lake','_background_']


# Choose model to train
if model_name == "fcn":
    model = fcn_8s(input_shape=(512, 512, 3), num_classes=len(labels), lr_init=1e-3, lr_decay=5e-4)
elif model_name == "unet":
    model = unet(input_shape=(512, 512, 3), num_classes=len(labels), lr_init=1e-3, lr_decay=5e-4)
elif model_name == "unet_fpa":
    model = unet_fpa(input_shape=(512, 512, 3), num_classes=len(labels), lr_init=1e-3, lr_decay=5e-4)
elif model_name == "unet_gau":
    model = unet_gau(input_shape=(512, 512, 3), num_classes=len(labels), lr_init=1e-3, lr_decay=5e-4)
elif model_name == "unet_fpagau":
    model = unet_fpagau(input_shape=(512, 512, 3), num_classes=len(labels), lr_init=1e-3, lr_decay=5e-4)
elif model_name == "unet_att":
    model = unet_att(input_shape=(512, 512, 3), num_classes=len(labels), lr_init=1e-3, lr_decay=5e-4)
elif model_name == "unet_se":
    model = unet_se(input_shape=(512, 512, 3), num_classes=len(labels), lr_init=1e-3, lr_decay=5e-4)
elif model_name == "unet_se_gau":
    model = unet_se_gau(input_shape=(512, 512, 3), num_classes=len(labels), lr_init=1e-3, lr_decay=5e-4)
elif model_name == "unet_se_gau_fpa":
Пример #4
0
import cv2
import numpy as np

from keras import backend as K

from model.unet import unet
from model.fcn import fcn_8s

# Use only 3 classes.
labels = ['background', 'person', 'car', 'road']

model = fcn_8s(input_shape=(256, 512, 3),
               num_classes=len(labels),
               init_lr=5e-3)
model.load_weights('./model_weight.h5')


def result_map_to_img(res_map):
    img = np.zeros((256, 512, 3), dtype=np.uint8)
    res_map = np.squeeze(res_map)

    argmax_idx = np.argmax(res_map, axis=2)

    # For np.where calculation.
    person = (argmax_idx == 1)
    car = (argmax_idx == 2)
    road = (argmax_idx == 3)

    img[:, :, 0] = np.where(person, 255, 0)
    img[:, :, 1] = np.where(car, 255, 0)
    img[:, :, 2] = np.where(road, 255, 0)
Пример #5
0
args = parser.parse_args()
model_name = args.model
TRAIN_BATCH = args.train_batch
VAL_BATCH = args.val_batch
lr_init = args.lr_init
lr_decay = args.lr_decay
vgg_path = args.vgg

# Use only 3 classes.
labels = ['background', 'person', 'car', 'road']

# Choose model to train
if model_name == "fcn":
    model = fcn_8s(input_shape=(256, 512, 3),
                   num_classes=len(labels),
                   lr_init=lr_init,
                   lr_decay=lr_decay,
                   vgg_weight_path=vgg_path)
elif model_name == "unet":
    model = unet(input_shape=(256, 512, 3),
                 num_classes=len(labels),
                 lr_init=lr_init,
                 lr_decay=lr_decay,
                 vgg_weight_path=vgg_path)
elif model_name == "pspnet":
    model = pspnet50(input_shape=(256, 512, 3),
                     num_classes=len(labels),
                     lr_init=lr_init,
                     lr_decay=lr_decay)

# Define callbacks
        'segnet'
    ],
    help="Model to test. 'fcn', 'unet', 'pspnet' is available.")
parser.add_argument("-P",
                    "--img_path",
                    required=True,
                    help="The image path you want to test")

args = parser.parse_args()
model_name = args.model
img_path = args.img_path

labels = 2
if model_name == "fcn":
    model = fcn_8s(input_shape=(256, 256, 5),
                   num_classes=labels,
                   lr_init=1e-3,
                   lr_decay=5e-4)
elif model_name == "unet":
    model = unet(input_shape=(256, 256, 7),
                 num_classes=labels,
                 lr_init=1e-3,
                 lr_decay=5e-4)
elif model_name == "pspnet":
    model = pspnet50(input_shape=(256, 256, 5),
                     num_classes=labels,
                     lr_init=1e-3,
                     lr_decay=5e-4)
elif model_name == 'deeplabv3p':
    model = Deeplabv3(input_shape=(256, 256, 5), classes=labels)
elif model_name == "deeplabv3":
    model = deeplabv3_plus(input_shape=(256, 256, 5), num_classes=labels)