# data labeled_documents = [ ("example example example example example", ["example"]), ("test llda model test llda model test llda model", ["test", "llda_model"]), ("example test example test example test example test", ["example", "test"]), ("good perfect good good perfect good good perfect good ", ["positive"]), ("bad bad down down bad bad down", ["negative"]) ] # new a Labeled LDA model # llda_model = llda.LldaModel(labeled_documents=labeled_documents, alpha_vector="50_div_K", eta_vector=0.001) # llda_model = llda.LldaModel(labeled_documents=labeled_documents, alpha_vector=0.02, eta_vector=0.002) llda_model = llda.LldaModel(labeled_documents=labeled_documents) print llda_model # training llda_model.training(iteration=10, log=True) # update print "before updating: ", llda_model update_labeled_documents = [ ("new example test example test example test example test", ["example", "test"]) ] llda_model.update(labeled_documents=update_labeled_documents) print "after updating: ", llda_model # train again
# initialize data labeled_documents = [ ("example example example example example" * 10, ["example"]), ("test llda model test llda model test llda model" * 10, ["test", "llda_model"]), ("example test example test example test example test" * 10, ["example", "test"]), ("good perfect good good perfect good good perfect good " * 10, ["positive"]), ("bad bad down down bad bad down" * 10, ["negative"]) ] # new a Labeled LDA model # llda_model = llda.LldaModel(labeled_documents=labeled_documents, alpha_vector="50_div_K", eta_vector=0.001) # llda_model = llda.LldaModel(labeled_documents=labeled_documents, alpha_vector=0.02, eta_vector=0.002) llda_model = llda.LldaModel(labeled_documents=labeled_documents, alpha_vector=0.01) print(llda_model) # training # llda_model.training(iteration=10, log=True) while True: print("iteration %s sampling..." % (llda_model.iteration + 1)) llda_model.training(1) print("after iteration: %s, perplexity: %s" % (llda_model.iteration, llda_model.perplexity())) print("delta beta: %s" % llda_model.delta_beta) if llda_model.is_convergent(method="beta", delta=0.01): break # update print("before updating: ", llda_model)