def train(NET, TRAIN, VAL): # Random Seed random = cfg.getRandomState() image.resetRandomState() # Load pretrained model if cfg.PRETRAINED_MODEL_NAME: snapshot = io.loadModel(cfg.PRETRAINED_MODEL_NAME) NET = io.loadParams(NET, snapshot['params']) # Load teacher models teach_funcs = [] if len(cfg.TEACHER) > 0: for t in cfg.TEACHER: snapshot = io.loadModel(t) TEACHER = snapshot['net'] teach_funcs.append(birdnet.test_function(TEACHER, hasTargets=False)) # Compile Theano functions train_net = birdnet.train_function(NET) test_net = birdnet.test_function(NET) # Status log.i("START TRAINING...") # Train for some epochs... for epoch in range(cfg.EPOCH_START, cfg.EPOCHS + 1): try: # Stop? if cfg.DO_BREAK: break # Clear stats for every epoch stats.clearStats() stats.setValue('sample_count', len(TRAIN) + len(VAL)) # Start timer stats.tic('epoch_time') # Shuffle dataset (this way we get "new" batches every epoch) TRAIN = shuffle(TRAIN, random_state=random) # Iterate over TRAIN batches of images for image_batch, target_batch in bg.nextBatch(TRAIN): # Show progress stats.showProgress(epoch) # If we have a teacher, we use that model to get new targets if len(teach_funcs) > 0: target_batch = np.zeros((len(teach_funcs), target_batch.shape[0], target_batch.shape[1]), dtype='float32') for i in range(len(teach_funcs)): target_batch[i] = teach_funcs[i](image_batch) target_batch = np.mean(target_batch, axis=0) # Calling the training functions returns the current loss loss = train_net(image_batch, target_batch, lr.dynamicLearningRate(cfg.LR_SCHEDULE, epoch)) stats.setValue('train loss', loss, 'append') stats.setValue('batch_count', 1, 'add') # Stop? if cfg.DO_BREAK: break # Iterate over VAL batches of images for image_batch, target_batch in bg.nextBatch(VAL, False, True): # Calling the test function returns the net output, loss and accuracy prediction_batch, loss, acc = test_net(image_batch, target_batch) stats.setValue('val loss', loss, 'append') stats.setValue('val acc', acc, 'append') stats.setValue('batch_count', 1, 'add') stats.setValue('lrap', [metrics.lrap(prediction_batch, target_batch)], 'add') # Show progress stats.showProgress(epoch) # Stop? if cfg.DO_BREAK: break # Show stats for epoch stats.showProgress(epoch, done=True) stats.toc('epoch_time') log.r(('TRAIN LOSS:', np.mean(stats.getValue('train loss'))), new_line=False) log.r(('VAL LOSS:', np.mean(stats.getValue('val loss'))), new_line=False) log.r(('VAL ACC:', int(np.mean(stats.getValue('val acc')) * 10000) / 100.0, '%'), new_line=False) log.r(('MLRAP:', int(np.mean(stats.getValue('lrap')) * 1000) / 1000.0), new_line=False) log.r(('TIME:', stats.getValue('epoch_time'), 's')) # Save snapshot? if not epoch % cfg.SNAPSHOT_EPOCHS: io.saveModel(NET, cfg.CLASSES, epoch) print('vish') io.saveParams(NET, cfg.CLASSES, epoch) # New best net? if np.mean(stats.getValue('lrap')) > stats.getValue('best_mlrap'): stats.setValue('best_net', NET, static=True) stats.setValue('best_epoch', epoch, static=True) stats.setValue('best_mlrap', np.mean(stats.getValue('lrap')), static=True) # Early stopping? if epoch - stats.getValue('best_epoch') >= cfg.EARLY_STOPPING_WAIT: log.i('EARLY STOPPING!') break # Stop? if cfg.DO_BREAK: break except KeyboardInterrupt: log.i('KeyboardInterrupt') cfg.DO_BREAK = True break # Status log.i('TRAINING DONE!') log.r(('BEST MLRAP:', stats.getValue('best_mlrap'), 'EPOCH:', stats.getValue('best_epoch'))) # Save best model and return io.saveParams(stats.getValue('best_net'), cfg.CLASSES, stats.getValue('best_epoch')) print('in training vish') return io.saveModel(stats.getValue('best_net'), cfg.CLASSES, stats.getValue('best_epoch'))
def runTest(SNAPSHOTS, TEST): # Do we have more than one snapshot? if not isinstance(SNAPSHOTS, (list, tuple)): SNAPSHOTS = [SNAPSHOTS] # Load snapshots test_functions = [] for s in SNAPSHOTS: # Settings NET = s['net'] cfg.CLASSES = s['classes'] cfg.IM_DIM = s['im_dim'] cfg.IM_SIZE = s['im_size'] # Compile test function test_net = birdnet.test_function(NET, hasTargets=False, layer_index=-1) test_functions.append(test_net) # Status log.i('START TESTING...') # Make predictions submission = '' for spec_batch, mediaid, timestamp, filename in bg.threadedGenerator( getSpecBatches(TEST)): try: # Prediction prediction_batch = [] for test_func in test_functions: if len(prediction_batch) == 0: prediction_batch = test_func(spec_batch) else: prediction_batch += test_func(spec_batch) prediction_batch /= len(test_functions) # Eliminate the scores for 'Noise' if 'Noise' in cfg.CLASSES: prediction_batch[:, cfg.CLASSES.index('Noise')] = np.min( prediction_batch) # Prediction pooling p_pool = test.predictionPooling(prediction_batch) # Get class labels p_labels = {} for i in range(p_pool.shape[0]): p_labels[cfg.CLASSES[i]] = p_pool[i] # Sort by score p_sorted = sorted(p_labels.items(), key=operator.itemgetter(1), reverse=True) # Add scores to submission for i in range(min(100, len(p_sorted))): if getClassId(p_sorted[i][0]): submission += mediaid + ';' + timestamp + ';' + getClassId( p_sorted[i][0]) + ';' + str(p_sorted[i][1]) + '\n' # Show sample stats log.i((filename, timestamp), new_line=False) log.i(('TOP PREDICTION:', p_sorted[0][0], int(p_sorted[0][1] * 1000) / 10.0, '%'), new_line=True) except KeyboardInterrupt: cfg.DO_BREAK = True break # Status log.i('DONE TESTING!') return submission
def test(SNAPSHOTS): # Do we have more than one snapshot? if not isinstance(SNAPSHOTS, (list, tuple)): SNAPSHOTS = [SNAPSHOTS] # Load snapshots test_functions = [] for s in SNAPSHOTS: # Settings NET = s['net'] cfg.CLASSES = s['classes'] cfg.IM_DIM = s['im_dim'] cfg.IM_SIZE = s['im_size'] # Compile test function test_net = birdnet.test_function(NET, hasTargets=False, layer_index=-1) test_functions.append(test_net) # Parse Testset TEST = parseTestSet() # Status log.i('START TESTING...') stats.clearStats() stats.tic('test_time') # Make predictions for spec_batch, labels, filename in bg.threadedGenerator( getSpecBatches(TEST)): try: # Status stats.tic('pred_time') # Prediction prediction_batch = [] for test_func in test_functions: if len(prediction_batch) == 0: prediction_batch = test_func(spec_batch) else: prediction_batch += test_func(spec_batch) prediction_batch /= len(test_functions) # Eliminate the scores for 'Noise' if 'Noise' in cfg.CLASSES: prediction_batch[:, cfg.CLASSES.index('Noise')] = np.min( prediction_batch) # Prediction pooling p_pool = predictionPooling(prediction_batch) # Get class labels p_labels = {} for i in range(p_pool.shape[0]): p_labels[cfg.CLASSES[i]] = p_pool[i] # Sort by score p_sorted = sorted(p_labels.items(), key=operator.itemgetter(1), reverse=True) # Calculate MLRAP (MRR for single labels) targets = np.zeros(p_pool.shape[0], dtype='float32') for label in labels: if label in cfg.CLASSES: targets[cfg.CLASSES.index(label)] = 1.0 lrap = metrics.lrap(np.expand_dims(p_pool, 0), np.expand_dims(targets, 0)) stats.setValue('lrap', lrap, mode='append') # Show sample stats log.i((filename), new_line=True) log.i(('\tLABELS:', labels), new_line=True) log.i(('\tTOP PREDICTION:', p_sorted[0][0], int(p_sorted[0][1] * 1000) / 10.0, '%'), new_line=True) log.i(('\tLRAP:', int(lrap * 1000) / 1000.0), new_line=False) log.i(('\tMLRAP:', int(np.mean(stats.getValue('lrap')) * 1000) / 1000.0), new_line=True) # Save some stats if p_sorted[0][0] == labels[0]: stats.setValue('top1_correct', 1, 'add') stats.setValue('top1_confidence', p_sorted[0][1], 'append') else: stats.setValue('top1_incorrect', 1, 'add') stats.toc('pred_time') stats.setValue('time_per_batch', stats.getValue('pred_time'), 'append') except KeyboardInterrupt: cfg.DO_BREAK = True break except: log.e('ERROR WHILE TRAINING!') continue # Stats stats.toc('test_time') log.i(('TESTING DONE!', 'TIME:', stats.getValue('test_time'), 's')) log.r(('FINAL MLRAP:', np.mean(stats.getValue('lrap')))) log.r(('TOP 1 ACCURACY:', max( 0, float(stats.getValue('top1_correct')) / (stats.getValue('top1_correct') + stats.getValue('top1_incorrect'))))) log.r(('TOP 1 MEAN CONFIDENCE:', max(0, np.mean(stats.getValue('top1_confidence'))))) log.r(('TIME PER BATCH:', int(np.mean(stats.getValue('time_per_batch')) * 1000), 'ms')) return np.mean(stats.getValue('lrap')), int( np.mean(stats.getValue('time_per_file')) * 1000)