def fre_losses(end_points, labels): with tf.variable_scope('loss'): loss = 0.0 for _, key in enumerate(end_points): cost = fre_loss(key, labels) loss += cost tf.losses.add_loss(loss) if loss is not None: tf.logging.info('Add_loss Done!') tf.summary.scalar('weights_loss', loss)
def fre_losses(end_points, labels): loss = 0.0 if len(end_points) < 6: raise ValueError('Master: lacking of a layers!') with tf.variable_scope('loss'): for i, key in enumerate(end_points): cost = fre_loss(key, labels) loss += cost tf.losses.add_loss(loss) if loss is not None: tf.logging.info('Add_loss Done!') tf.summary.scalar('weights_loss', loss)