Пример #1
0
    def __init__(self, n_class, backbone='resnet34', aux=False, pretrained_base=False, dilated=True, deep_stem=False, **kwargs):
        super(ResUnet, self).__init__(backbone, pretrained_base=pretrained_base, dilated=dilated, deep_stem=deep_stem, **kwargs)
        self.aux = aux
        self.dilated = dilated
        channels = self.base_channel
        if deep_stem or backbone == 'resnest101':
            conv1_channel = 128
        else:
            conv1_channel = 64

        if dilated:
            self.donv_up3 = decoder_block(channels[0]+channels[3], channels[0])
            self.donv_up4 = decoder_block(channels[0]+conv1_channel, channels[0])
        else:
            self.donv_up1 = decoder_block(channels[2] + channels[3], channels[2])
            self.donv_up2 = decoder_block(channels[1] + channels[2], channels[1])
            self.donv_up3 = decoder_block(channels[0] + channels[1], channels[0])
            self.donv_up4 = decoder_block(channels[0] + conv1_channel, channels[0])

        if self.aux:
            self.aux_layer = _FCNHead(256, n_class)

        self.out_conv = nn.Sequential(
            nn.Conv2d(channels[0], channels[0], kernel_size=3, padding=1, bias=False),
            nn.BatchNorm2d(channels[0]),
            nn.ReLU(),
            nn.Conv2d(channels[0], n_class, kernel_size=1, bias=False),
        )
Пример #2
0
    def __init__(self, n_class, backbone='resnet34', aux=False, pretrained_base=False, dilated=False, **kwargs):
        super(PSPNet, self).__init__(backbone, pretrained_base=pretrained_base, dilated=dilated, **kwargs)
        self.head = _PSPHead(self.base_channel[-1], n_class, **kwargs)
        self.aux = aux
        if self.aux:
            self.auxlayer = _FCNHead(256, n_class, **kwargs)

        self.__setattr__('exclusive', ['head', 'auxlayer'] if aux else ['head'])
Пример #3
0
    def __init__(self,
                 n_class,
                 backbone='resnet34',
                 aux=False,
                 pretrained_base=False,
                 dilated=True,
                 deep_stem=False,
                 crop_size=224,
                 **kwargs):
        super(EMANet, self).__init__(backbone,
                                     pretrained_base=pretrained_base,
                                     dilated=dilated,
                                     deep_stem=deep_stem,
                                     **kwargs)
        self.aux = aux
        self.dilated = dilated
        channels = self.base_channel  # [256, 512, 1024, 2048]
        print(channels)
        if deep_stem or backbone == 'resnest101':
            conv1_channel = 128
        else:
            conv1_channel = 64

        # self.spsp = SPSP(channels[3], scales=[6, 3, 2, 1])   # scales=[6, 3, 2, 1]
        self.emau = EMAU(channels[0], k=32)

        if dilated:
            self.SF1 = AlignModule(channels[3], channels[0])
            self.donv_up3 = decoder_block(channels[0] + channels[3],
                                          channels[0])

            self.SF2 = AlignModule(channels[0], conv1_channel)
            self.donv_up4 = decoder_block(channels[0] + conv1_channel,
                                          channels[0])

            self.out_conv = out_conv(channels[0], n_class)
        else:
            # self.SF1 = AlignModule(channels[3], channels[2])
            self.donv_up1 = decoder_block(channels[2] + channels[3],
                                          channels[2])

            # self.SF2 = AlignModule(channels[2], channels[1])
            self.donv_up2 = decoder_block(channels[1] + channels[2],
                                          channels[1])

            # self.SF3 = AlignModule(channels[1], channels[0])
            self.donv_up3 = decoder_block(channels[0] + channels[1],
                                          channels[0])

            # self.SF4 = AlignModule(channels[0], channels[0])
            self.donv_up4 = decoder_block(channels[0] + conv1_channel,
                                          channels[0])
            self.out_conv = out_conv(channels[0], n_class)

        if self.aux:
            self.aux_layer = _FCNHead(channels[3], n_class)
Пример #4
0
    def __init__(self, in_channel, n_class):
        super().__init__()
        self.n_class = n_class
        self.conv = _FCNHead(in_channel, n_class)

        inter_channel = in_channel // 2
        self.node = 64
        self.st1 = squeeze_and_expand(in_channel, self.node, inter_channel)
        self.st2 = squeeze_and_expand(in_channel, self.node, inter_channel)
        self.gcn = GCN(inter_channel, int(self.node * 2))
Пример #5
0
    def __init__(self, in_channel, n_class):
        super().__init__()
        self.n_class = n_class
        self.conv = _FCNHead(in_channel, n_class)

        self.GloRe = nn.ModuleList()
        for i in range(n_class):
            self.GloRe.append(
                GloRe_Unit(
                    in_channel,
                    in_channel // 4,
                    ConvNd=nn.Conv2d,
                    BatchNormNd=nn.BatchNorm2d,
                ))
Пример #6
0
    def __init__(self, in_channel, n_class):
        super().__init__()
        self.n_class = n_class
        self.conv = _FCNHead(in_channel, n_class)

        inter_channel = in_channel // 2
        self.node = 64
        self.st = nn.ModuleList()
        for i in range(n_class):
            self.st.append(
                squeeze_and_expand(in_channel, self.node, inter_channel))

        self.gcn = GCN(inter_channel, int(self.node * n_class))

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                init_weights(m, init_type='kaiming')
            elif isinstance(m, nn.BatchNorm2d):
                init_weights(m, init_type='kaiming')
Пример #7
0
    def __init__(self,
                 n_class,
                 backbone='resnet34',
                 aux=False,
                 pretrained_base=False,
                 dilated=True,
                 deep_stem=False,
                 **kwargs):
        super(DF_ResUnet, self).__init__(backbone,
                                         pretrained_base=pretrained_base,
                                         dilated=dilated,
                                         deep_stem=deep_stem,
                                         **kwargs)
        self.aux = aux
        self.dilated = dilated
        channels = self.base_channel
        if deep_stem or backbone == 'resnest101':
            conv1_channel = 128
        else:
            conv1_channel = 64

        if dilated:
            self.donv_up3 = decoder_block(channels[0] + channels[3],
                                          channels[0])
            self.donv_up4 = decoder_block(channels[0] + conv1_channel,
                                          channels[0])
        else:
            self.donv_up1 = decoder_block(channels[2] + channels[3],
                                          channels[2])
            self.donv_up2 = decoder_block(channels[1] + channels[2],
                                          channels[1])
            self.donv_up3 = decoder_block(channels[0] + channels[1],
                                          channels[0])
            self.donv_up4 = decoder_block(channels[0] + conv1_channel,
                                          channels[0])

        if self.aux:
            self.aux_layer = _FCNHead(256, n_class)

        self.sff = SelFuseFeature_1(channels[0], n_class=n_class)
Пример #8
0
    def __init__(self,
                 n_class,
                 backbone='resnet34',
                 aux=False,
                 pretrained_base=False,
                 dilated=True,
                 deep_stem=False,
                 crop_size=224,
                 **kwargs):
        super(EMANet, self).__init__(backbone,
                                     pretrained_base=pretrained_base,
                                     dilated=dilated,
                                     deep_stem=deep_stem,
                                     **kwargs)
        self.aux = aux
        self.dilated = dilated
        channels = self.base_channel  # [256, 512, 1024, 2048]
        if deep_stem or backbone == 'resnest101':
            conv1_channel = 128
        else:
            conv1_channel = 64

        # self.scale = [(128, 128), (256, 256)] # locate
        # self.scale = [(64, 64), (128, 128)]  # seg 224
        # self.conv2 = deep_conv(3, conv1_channel//2, conv1_channel)
        # self.conv3 = deep_conv(3, conv1_channel//2, conv1_channel)

        # self.aspp = _ASPP(channels[3], [6, 10, 14], norm_layer=nn.BatchNorm2d, norm_kwargs=None, out_channels=512, **kwargs)
        self.emau = EMAU(channels[3], k=64)
        # self.ppm = _PyramidPooling(channels[3], norm_layer=nn.BatchNorm2d, norm_kwargs=None)
        # self.conv_ppm = conv_bn_relu(channels[3] * 2, channels[2])

        if dilated:
            self.donv_up3 = decoder_block(channels[0] + channels[3],
                                          channels[0])
            self.donv_up4 = decoder_block(channels[0] + conv1_channel,
                                          channels[0])
            self.out_conv = out_conv(channels[0] * 3, n_class)
        else:
            self.donv_up1 = decoder_block(channels[2] + channels[3],
                                          channels[2])
            self.donv_up2 = decoder_block(channels[1] + channels[2],
                                          channels[1])
            self.donv_up3 = decoder_block(channels[0] + channels[1],
                                          channels[0])
            self.donv_up4 = decoder_block(channels[0] + conv1_channel,
                                          channels[0])
            self.out_conv1 = conv_bn_relu(channels[2], channels[0] // 2)
            self.out_conv2 = conv_bn_relu(channels[1], channels[0] // 2)
            self.out_conv3 = conv_bn_relu(channels[0], channels[0] // 2)
            self.out_conv = out_conv(channels[0] * 2 + channels[0] // 2,
                                     n_class)

        if type(crop_size) == tuple:
            self.reco = Reco_module(channels[0], crop_size[0] // 2,
                                    crop_size[1] // 2, 64)
        else:
            self.reco = Reco_module(channels[0], crop_size // 2,
                                    crop_size // 2, 64)

        if self.aux:
            self.aux_layer = _FCNHead(channels[3], n_class)
Пример #9
0
 def __init__(self, n_class, backbone='resnet34', aux=False, pretrained_base=False, dilated=False, **kwargs):
     super(DeepLabV3, self).__init__(backbone, pretrained_base=pretrained_base, dilated=dilated, **kwargs)
     self.head = _DeepLabHead(self.base_channel[-1], n_class, **kwargs)
     self.aux = aux
     if self.aux:
         self.auxlayer = _FCNHead(256, n_class, **kwargs)