class Agent(BaseAgent): '''Deep Trading Agent based on Deep Q Learning''' '''TODO: 1. play ''' def __init__(self, sess, logger, config, env): super(Agent, self).__init__(config, logger) self.sess = sess self.logger = logger self.config = config params = DeepSenseParams(config) self.env = env self.history = History(logger, config) self.replay_memory = ReplayMemory(logger, config) with tf.variable_scope(STEPS): self.step_op = tf.Variable(0, trainable=False, name=STEP) self.step_input = tf.placeholder('int32', None, name=STEP_INPUT) self.step_assign_op = self.step_op.assign(self.step_input) self.build_dqn(params) @property def summary_writer(self): return self._summary_writer def train(self): start_step = self.step_op.eval() num_episodes, self.update_count, ep_reward = 0, 0, 0. total_reward, self.total_loss, self.total_q = 0., 0., 0. max_avg_ep_reward = 0 ep_rewards, actions = [], [] self.env.new_random_episode(self.history) for self.step in tqdm(range(start_step, self.max_step), ncols=70, initial=start_step): if self.step == self.learn_start: num_episodes, self.update_count, ep_reward = 0, 0, 0. total_reward, self.total_loss, self.total_q = 0., 0., 0. ep_rewards, actions = [], [] # 1. predict action = self.predict(self.history.get()) # 2. act screen, reward, terminal = self.env.act(action) # 3. observe self.observe(screen, reward, action, terminal) if terminal: self.env.new_random_episode(self.history) num_episodes += 1 ep_rewards.append(ep_reward) ep_reward = 0. else: ep_reward += reward actions.append(action) total_reward += reward if self.step >= self.learn_start: if self.step % self.test_step == self.test_step - 1: avg_reward = total_reward / self.test_step avg_loss = self.total_loss / self.update_count avg_q = self.total_q / self.update_count try: max_ep_reward = np.max(ep_rewards) min_ep_reward = np.min(ep_rewards) avg_ep_reward = np.mean(ep_rewards) except: max_ep_reward, min_ep_reward, avg_ep_reward = 0, 0, 0 message = 'avg_r: %.4f, avg_l: %.6f, avg_q: %3.6f, avg_ep_r: %.4f, max_ep_r: %.4f, min_ep_r: %.4f, # game: %d' \ % (avg_reward, avg_loss, avg_q, avg_ep_reward, max_ep_reward, min_ep_reward, num_game) print_and_log_message(message, self.logger) if max_avg_ep_reward * 0.9 <= avg_ep_reward: self.step_assign_op.eval( {self.step_input: self.step + 1}) self.save_model(self.step + 1) max_avg_ep_reward = max(max_avg_ep_reward, avg_ep_reward) if self.step > 180: self.inject_summary( { 'average.reward': avg_reward, 'average.loss': avg_loss, 'average.q': avg_q, 'episode.max reward': max_ep_reward, 'episode.min reward': min_ep_reward, 'episode.avg reward': avg_ep_reward, 'episode.num of game': num_game, 'episode.rewards': ep_rewards, 'episode.actions': actions, 'training.learning_rate': self.learning_rate_op.eval( {self.learning_rate_step: self.step}), }, self.step) num_game = 0 total_reward = 0. self.total_loss = 0. self.total_q = 0. self.update_count = 0 ep_reward = 0. ep_rewards = [] actions = [] def predict(self, s_t, test_ep=None): ep = test_ep or (self.ep_end + max(0., (self.ep_start - self.ep_end) \ * (self.ep_end_t - max(0., self.step - self.learn_start)) / self.ep_end_t)) if random.random() < ep: action = random.randrange(self.env.action_size) else: action = self.q.action.eval({self.s_t: [s_t]})[0] return action def observe(self, screen, reward, action, terminal): #clip reward in the range min to max reward = max(self.min_reward, min(self.max_reward, reward)) self.history.add(screen) self.replay_memory.add(screen, reward, action, terminal) if self.step > self.learn_start: if self.step % self.train_frequency == 0: self.q_learning_mini_batch() if self.step % self.target_q_update_step == self.target_q_update_step - 1: self.update_target_network() def q_learning_mini_batch(self): if self.replay_memory.count >= self.replay_memory.history_length: s_t, action, reward, s_t_plus_1, terminal = self.replay_memory.sample( ) max_q_t_plus_1 = self.t_q.action.eval({self.t_s_t: s_t_plus_1}) terminal = np.array(terminal) + 0. target_q = reward + (1 - terminal) * max_q_t_plus_1 _, q_t, loss, avg_q_summary = self.sess.run( [ self.optimizer, self.q.values, self.loss, self.q.avg_q_summary ], { self.target_q: target_q, self.action: action, self.s_t: s_t, self.learning_rate_step: self.step, }) self.summary_writer.add_summary(avg_q_summary, self.step) self.total_loss += loss self.total_q += q_t.mean() self.update_count += 1 def build_dqn(self, params): with tf.variable_scope(PREDICTION): self.s_t = tf.placeholder(dtype=tf.float32, shape=[ None, self.replay_memory.history_length, self.replay_memory.num_channels ]) self.q = DeepSense(params, self.logger, self.sess, self.config, name=Q_NETWORK) self.q.build_model(self.s_t) with tf.variable_scope(TARGET): self.t_s_t = tf.placeholder(dtype=tf.float32, shape=[ None, self.replay_memory.history_length, self.replay_memory.num_channels ]) self.t_q = DeepSense(params, self.logger, self.sess, self.config, name=T_Q_NETWORK) self.t_q.build_model(self.t_s_t, train=False) with tf.variable_scope(UPDATE_TARGET_NETWORK): self.q_weights_placeholders = {} self.t_weights_assign_ops = {} for name in self.q.weights.keys(): self.q_weights_placeholders[name] = tf.placeholder( tf.float32, self.q.weights[name].get_shape().as_list()) for name in self.q.weights.keys(): self.t_weights_assign_ops[name] = self.t_q.weights[ name].assign(self.q_weights_placeholders[name]) with tf.variable_scope(TRAINING): self.target_q = tf.placeholder(tf.float32, [None], name=TARGET_Q) self.action = tf.placeholder(tf.int64, [None], name=ACTION) action_one_hot = tf.one_hot(self.action, self.env.action_size, 1.0, 0.0, name=ACTION_ONE_HOT) q_acted = tf.reduce_sum(self.q.values * action_one_hot, reduction_indices=1, name=Q_ACTED) with tf.variable_scope(LOSS): self.delta = self.target_q - q_acted self.global_step = tf.Variable(0, trainable=False) self.loss = tf.reduce_mean(clipped_error(self.delta), name=LOSS) with tf.variable_scope(OPTIMIZER): self.learning_rate_step = tf.placeholder( tf.int64, None, name=LEARNING_RATE_STEP) self.learning_rate_op = tf.maximum( self.learning_rate_minimum, tf.train.exponential_decay(self.learning_rate, self.learning_rate_step, self.learning_rate_decay_step, self.learning_rate_decay, staircase=True)) self.optimizer = tf.train.RMSPropOptimizer( self.learning_rate_op, momentum=0.95, epsilon=0.01).minimize(self.loss) with tf.variable_scope(SUMMARY): scalar_summary_tags = ['average.reward', 'average.loss', 'average.q', \ 'episode.max reward', 'episode.min reward', 'episode.avg reward', \ 'episode.num of game', 'training.learning_rate'] self.summary_placeholders = {} self.summary_ops = {} for tag in scalar_summary_tags: self.summary_placeholders[tag] = \ tf.placeholder('float32', None, name=tag.replace(' ', '_')) self.summary_ops[tag] = \ tf.summary.scalar( name="{}-{}".format(self.env_name, tag), tensor=self.summary_placeholders[tag] ) histogram_summary_tags = ['episode.rewards', 'episode.actions'] for tag in histogram_summary_tags: self.summary_placeholders[tag] = \ tf.placeholder('float32', None, name=tag.replace(' ', '_')) self.summary_ops[tag] = \ tf.summary.histogram( name=tag, self.summary_placeholders[tag] ) self._summary_writer = tf.summary.FileWriter( config[TENSORBOARD_LOG_DIR]) self._summary_writer.add_graph(sess.graph) tf.initialize_all_variables().run() self._saver = tf.train.Saver(self.q.weights.values + [self.step_op], max_to_keep=30) self.load_model() self.update_target_network() def update_target_network(self): for name in self.q.weights.keys(): self.t_weights_assign_ops[name].eval({ self.q_weights_placeholders[name]: self.q.weights[name].eval() }) def inject_summary(self, tag_dict, step): summary_str_lists = self.sess.run( [self.summary_ops[tag] for tag in tag_dict.keys()], { self.summary_placeholders[tag]: value for tag, value in tag_dict.items() }) for summary_str in summary_str_lists: self.writer.add_summary(summary_str, self.step)
class DQN: def __init__(self, config, network, loss, optimizer): self.device = torch.device( "cuda" if torch.cuda.is_available() else "cpu") self.memory = ReplayMemory(config['REPLAY']) self.policy_net = network.to(self.device) self.target_net = network.to(self.device) self.target_net.load_state_dict(self.policy_net.state_dict()) self.target_net.eval() self.loss = loss self.optimizer = optimizer(self.policy_net.parameters(), config['lr']) self.steps_done = 0 self.config = config def update(self): self.target_net.load_state_dict(self.policy_net.state_dict()) def select_action(self, state): EPS_START, EPS_END, EPS_DECAY, n_actions = self.config[ 'EPS_START'], self.config['EPS_END'], self.config[ 'EPS_DECAY'], self.config['ACTION_SPACE'] sample = random.random() eps_threshold = EPS_END + (EPS_START - EPS_END) * \ math.exp(-1. * self.steps_done / EPS_DECAY) self.steps_done += 1 if sample > eps_threshold: with torch.no_grad(): # t.max(1) will return largest column value of each row. # second column on max result is index of where max element was # found, so we pick action with the larger expected reward. return self.policy_net(state).max(1)[1].view(1, 1) else: return torch.tensor([[random.randrange(n_actions)]], device=self.device, dtype=torch.long) def optimize_model(self): BATCH_SIZE = self.config['BATCH_SIZE'] if len(self.memory) < BATCH_SIZE: return transitions = self.memory.sample(BATCH_SIZE) # Transpose the batch (see https://stackoverflow.com/a/19343/3343043 for # detailed explanation). This converts batch-array of Transitions # to Transition of batch-arrays. batch = Transition(*zip(*transitions)) # Compute a mask of non-final states and concatenate the batch elements # (a final state would've been the one after which simulation ended) non_final_mask = torch.tensor(tuple( map(lambda s: s is not None, batch.next_state)), device=self.device, dtype=torch.bool) non_final_next_states = torch.cat( [s for s in batch.next_state if s is not None]) state_batch = torch.cat(batch.state) action_batch = torch.cat(batch.action) reward_batch = torch.cat(batch.reward) # Compute Q(s_t, a) - the model computes Q(s_t), then we select the # columns of actions taken. These are the actions which would've been taken # for each batch state according to policy_net state_action_values = self.policy_net(state_batch).gather( 1, action_batch) # Compute V(s_{t+1}) for all next states. # Expected values of actions for non_final_next_states are computed based # on the "older" target_net; selecting their best reward with max(1)[0]. # This is merged based on the mask, such that we'll have either the expected # state value or 0 in case the state was final. next_state_values = torch.zeros(BATCH_SIZE, device=self.device) next_state_values[non_final_mask] = self.target_net( non_final_next_states).max(1)[0].detach() # Compute the expected Q values GAMMA = self.config['GAMMA'] expected_state_action_values = (next_state_values * GAMMA) + reward_batch # Compute Huber loss loss = self.loss(state_action_values, expected_state_action_values.unsqueeze(1)) # Optimize the model self.optimizer.zero_grad() loss.backward() for param in self.policy_net.parameters(): param.grad.data.clamp_(-1, 1) self.optimizer.step()
class Agent(BaseAgent): '''Deep Trading Agent based on Deep Q Learning''' '''TODO: 1. add summary ops 2. timing and logging 3. model saving 4. increment self.step ''' def __init__(self, sess, logger, config, env): super(Agent, self).__init__(config) self.sess = sess self.logger = logger self.config = config params = DeepSenseParams(config) self.env = env self.history = History(logger, config) self.replay_memory = ReplayMemory(logger, config) with tf.variable_scope(STEPS): self.step_op = tf.Variable(0, trainable=False, name=STEP) self.step_input = tf.placeholder('int32', None, name=STEP_INPUT) self.step_assign_op = self.step_op.assign(self.step_input) self.build_dqn(params) def train(self): start_step = self.step_op.eval() num_episodes, self.update_count, ep_reward = 0, 0, 0. total_reward, self.total_loss, self.total_q = 0., 0., 0. max_avg_ep_reward = 0 ep_rewards, actions = [], [] self.env.new_random_episode(self.history) for self.step in range(start_step, self.max_step): if self.step == self.learn_start: num_episodes, self.update_count, ep_reward = 0, 0, 0. total_reward, self.total_loss, self.total_q = 0., 0., 0. ep_rewards, actions = [], [] # 1. predict action = self.predict(self.history.get()) # 2. act screen, reward, terminal = self.env.act(action) # 3. observe self.observe(screen, reward, action, terminal) if terminal: self.env.new_random_episode(self.history) num_episodes += 1 ep_rewards.append(ep_reward) ep_reward = 0. else: ep_reward += reward actions.append(action) total_reward += reward def predict(self, s_t, test_ep=None): ep = test_ep or (self.ep_end + max(0., (self.ep_start - self.ep_end) \ * (self.ep_end_t - max(0., self.step - self.learn_start)) / self.ep_end_t)) if random.random() < ep: action = random.randrange(self.env.action_size) else: action = self.q.action.eval({self.s_t: [s_t]})[0] return action def observe(self, screen, reward, action, terminal): #clip reward in the range min to max reward = max(self.min_reward, min(self.max_reward, reward)) self.history.add(screen) self.replay_memory.add(screen, reward, action, terminal) if self.step > self.learn_start: if self.step % self.train_frequency == 0: self.q_learning_mini_batch() if self.step % self.target_q_update_step == self.target_q_update_step - 1: self.update_target_network() def q_learning_mini_batch(self): if self.replay_memory.count >= self.replay_memory.history_length: s_t, action, reward, s_t_plus_1, terminal = self.replay_memory.sample( ) max_q_t_plus_1 = self.t_q.action.eval({self.t_s_t: s_t_plus_1}) terminal = np.array(terminal) + 0. target_q = reward + (1 - terminal) * max_q_t_plus_1 _, q_t, loss = self.sess.run( [self.optimizer, self.q.values, self.loss], { self.target_q: target_q, self.action: action, self.s_t: s_t, self.learning_rate_step: self.step, }) self.total_loss += loss self.total_q += q_t.mean() self.update_count += 1 def build_dqn(self, params): with tf.variable_scope(PREDICTION): self.s_t = tf.placeholder(dtype=tf.float32, shape=[ None, self.replay_memory.history_length, self.replay_memory.num_channels ]) self.q = DeepSense(params, self.logger, self.sess, self.config, name=Q_NETWORK) self.q.build_model(self.s_t) with tf.variable_scope(TARGET): self.t_s_t = tf.placeholder(dtype=tf.float32, shape=[ None, self.replay_memory.history_length, self.replay_memory.num_channels ]) self.t_q = DeepSense(params, self.logger, self.sess, self.config, name=T_Q_NETWORK) self.t_q.build_model(self.t_s_t, train=False) with tf.variable_scope(UPDATE_TARGET_NETWORK): self.q_weights_placeholders = {} self.t_weights_assign_ops = {} for name in self.q.weights.keys(): self.q_weights_placeholders[name] = tf.placeholder( tf.float32, self.q.weights[name].get_shape().as_list()) for name in self.q.weights.keys(): self.t_weights_assign_ops[name] = self.t_q.weights[ name].assign(self.q_weights_placeholders[name]) with tf.variable_scope(TRAINING): self.target_q = tf.placeholder(tf.float32, [None], name=TARGET_Q) self.action = tf.placeholder(tf.int64, [None], name=ACTION) action_one_hot = tf.one_hot(self.action, self.env.action_size, 1.0, 0.0, name=ACTION_ONE_HOT) q_acted = tf.reduce_sum(self.q.values * action_one_hot, reduction_indices=1, name=Q_ACTED) with tf.variable_scope(LOSS): self.delta = self.target_q - q_acted self.global_step = tf.Variable(0, trainable=False) self.loss = tf.reduce_mean(clipped_error(self.delta), name=LOSS) with tf.variable_scope(OPTIMIZER): self.learning_rate_step = tf.placeholder( tf.int64, None, name=LEARNING_RATE_STEP) self.learning_rate_op = tf.maximum( self.learning_rate_minimum, tf.train.exponential_decay(self.learning_rate, self.learning_rate_step, self.learning_rate_decay_step, self.learning_rate_decay, staircase=True)) self.optimizer = tf.train.RMSPropOptimizer( self.learning_rate_op, momentum=0.95, epsilon=0.01).minimize(self.loss) # tf.initialize_all_variables().run() #initialize the q network and the target network with the same weights # self.update_target_network() def update_target_network(self): for name in self.q.weights.keys(): self.t_weights_assign_ops[name].eval({ self.q_weights_placeholders[name]: self.q.weights[name].eval() })