Пример #1
0
def qmodel(name, device):
    if name == "resnet18":
        return ResNet18().to(device)
    elif name == "resnet34":
        return ResNet34().to(device)
    elif name == "resnet50":
        return ResNet50().to(device)
    elif name == "resnet101":
        return ResNet101().to(device)
    elif name == "resnet152":
        return ResNet152().to(device)
    elif name == "vgg11":
        return VGG("VGG11").to(device)
    elif name == "vgg13":
        return VGG("VGG13").to(device)
    elif name == "vgg16":
        return VGG("VGG16").to(device)
    elif name == "vgg19":
        return VGG("VGG19").to(device)
    elif name == "densenet121":
        return DenseNet121().to(device)
    elif name == "densenet169":
        return DenseNet169().to(device)
    elif name == "densenet201":
        return DenseNet201().to(device)
    elif name == "resnext":
        return ResNeXt29_8x64d().to(device)
Пример #2
0
    def __init__(self, channel=32, alpha=0.5):
        super(EFNet, self).__init__()

        self.rgb_extractor = SCRN(channel=channel)
        self.resnet_depth = ResNet18()
        self.alpha = alpha

        self.sd1 = CFC(channel)
        self.sd2 = CFC(channel)
        self.sd3 = CFC(channel)
        self.sd4 = CFC(channel)

        self.output_ds = ConcatOutput(3 * channel)

        self.conv_upsample1 = BasicConv2d(2 * channel, channel, 3, padding=1)
        self.conv_upsample2 = BasicConv2d(4 * channel, channel, 3, padding=1)
        self.conv_upsample3 = BasicConv2d(8 * channel, channel, 3, padding=1)
        self.conv_upsample4 = BasicConv2d(16 * channel, channel, 3, padding=1)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                m.weight.data.normal_(std=0.01)
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()
Пример #3
0
def main(config_dict):

    print("--- Loading dataset [{}] ---".format(config_dict["Dataset"]["name"])) # --------
    if config_dict["Dataset"]["name"] == "SVHN":
        svhn = SVHNData("Dataset/SVHN/train_32x32.mat", "Dataset/SVHN/test_32x32.mat")
        train_images, train_labels = svhn.get_train_data()
        test_images, test_labels = svhn.get_test_data()
    elif config_dict["Dataset"]["name"] == "CIFAR10":
        cifer10 = CiferData("Dataset/CIFAR10/")
        train_images, train_labels, validation_images, validation_labels, test_images, test_labels = cifer10.training_data(7000)
    else:
        print("Not dataset. please check the toml file")
        exit()
    # -------------------------------------------------------------------------------------

    train_data = train_images
    train_label = train_labels
    test_data = test_images
    test_label = test_labels

    print("--- Creating model [{}] ---".format(config_dict["Network"]["name"])) # ---------
    if config_dict["Network"]["name"] == "ResNet50":
        network = ResNet50(config_dict["Network"]["fig_size"], config_dict["Network"]["class"])
    elif config_dict["Network"]["name"] == "ResNet18":
        network = ResNet18(config_dict["Network"]["fig_size"], config_dict["Network"]["class"])
    else:
        network = ConvolutionalNeuralNetwork(config_dict["Network"]["fig_size"], config_dict["Network"]["class"])
    network.set_model(config_dict["Network"]["lr"])
    # -------------------------------------------------------------------------------------

    #saver = tf.compat.v1.train.Saver
    sess = tf.compat.v1.Session()
    init = tf.compat.v1.global_variables_initializer()
    sess.run(init)

    epoch = config_dict["episode"]
    batch_size = config_dict["batch_size"]

    # train
    accuracy_list = []
    loss_list = []
    with tqdm(range(epoch)) as pbar:
        for i, ch in enumerate(pbar):
            choice_id = np.random.choice(train_data.shape[0], batch_size, replace=False)
            batch_data = train_data[choice_id]
            batch_label = train_label[choice_id]

            _, loss = network.train(sess, batch_data, batch_label)
            loss_list.append(loss)
            pbar.set_postfix(OrderedDict(loss=loss))

    # test
    accuracy = 0
    for j in range(0, test_data.shape[0], 100):
        data = test_data[j:j+100]
        label = test_label[j:j+100]
        accuracy += int(network.test(sess, data, label)[0]*data.shape[0])

    print("test accuracy {}".format(accuracy/test_data.shape[0]*100.0))
Пример #4
0
def selectModel(modelName):
    if modelName == 'resnet18':
        print('modelName: ResNet18')
        model = ResNet18()
    elif modelName == 'mobilenetv1':
        print('modelName: MobileNetV1')
        model = MobileNet()
    else:
        raise ValueError
    return model
Пример #5
0
def get_model(model_name):
    if model_name == 'resnet':
        from model.resnet import ResNet18
        net = ResNet18(10)
    elif model_name == 'lenet':
        from model.lenet import LeNet
        net = LeNet(10)
    elif model_name == 'densenet':
        from model.densenet import DenseNet
        net = DenseNet(growthRate=12,
                       depth=40,
                       reduction=0.5,
                       bottleneck=True,
                       nClasses=10)
    elif model_name == 'vgg':
        from model.vgg import VGG
        net = VGG('VGG16', num_classes=10)

    return net
Пример #6
0
# Data Loader (Input Pipeline)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
                                           batch_size=args.batch_size,
                                           shuffle=True,
                                           pin_memory=True,
                                           num_workers=32)

test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
                                          batch_size=args.batch_size,
                                          shuffle=False,
                                          pin_memory=True,
                                          num_workers=10)

if args.model == 'resnet18':
    cnn = ResNet18(num_classes=num_classes)
elif args.model == 'wideresnet':
    if args.dataset == 'svhn':
        cnn = WideResNet(depth=16,
                         num_classes=num_classes,
                         widen_factor=8,
                         dropRate=0.4)
    else:
        cnn = WideResNet(depth=28,
                         num_classes=num_classes,
                         widen_factor=10,
                         dropRate=0.3)

cnn = cnn.cuda()
criterion = nn.CrossEntropyLoss().cuda()
cnn_optimizer = torch.optim.SGD(cnn.parameters(),
Пример #7
0
# Data Loader (Input Pipeline)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
                                           batch_size=args.batch_size,
                                           shuffle=True,
                                           pin_memory=True,
                                           num_workers=2)

test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
                                          batch_size=args.batch_size,
                                          shuffle=False,
                                          pin_memory=True,
                                          num_workers=2)

if args.model == 'resnet18':
    cnn = ResNet18(num_classes=num_classes, drop=args.drop)
elif args.model == 'wideresnet':
    if args.dataset == 'svhn':
        cnn = WideResNet(depth=16,
                         num_classes=num_classes,
                         widen_factor=4,
                         dropRate=args.drop)
    else:
        cnn = WideResNet(depth=28,
                         num_classes=num_classes,
                         widen_factor=10,
                         dropRate=args.drop)

cnn = cnn.cuda()
criterion = nn.CrossEntropyLoss().cuda()
cnn_optimizer = torch.optim.SGD(cnn.parameters(),
Пример #8
0
BATCH_SIZE = 128
LR = 0.1
N = 50000

valid = np.load('data/valid_data/valid.npz')['data']
clean = np.load('data/train_data/clean.npz')['data']
index = np.load('data/train_data/clean.npz')['index']

for i in range(2, 5):
    print("Round " + str(i))
    data = np.load('data/train_data/error_0.1_gaussian_0.' + str(i) +
                   '.npz')['data']
    index = np.load('data/train_data/error_0.1_gaussian_0.' + str(i) +
                    '.npz')['index']

    model = TrackedModel(ResNet18(), data, valid)
    train_his, val_his, class_his, train_recall, val_recall = model.train(
        optim.SGD(model.model.parameters(),
                  lr=LR,
                  momentum=0.9,
                  weight_decay=5e-4),
        BATCH=BATCH_SIZE,
        MAX_EPOCH=EPOCH,
        USE_VAL=True)
    his = np.zeros((N, EPOCH))
    for j in range(N):
        his[j] = train_his[np.where(class_his == j)]
    np.savez('bin/record/baseline_cifar_error_0.1_gaussian_0.' + str(i) +
             '_first_20',
             his=his,
             index=index,
Пример #9
0
    num_workers=2)  #生成一个个batch进行批训练,组成batch的时候顺序打乱取

testset = torchvision.datasets.CIFAR10(root='./data',
                                       train=False,
                                       download=True,
                                       transform=transform_test)
testloader = torch.utils.data.DataLoader(testset,
                                         batch_size=100,
                                         shuffle=False,
                                         num_workers=2)
# Cifar-10的标签
classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse',
           'ship', 'truck')

# 模型定义-ResNet
net = ResNet18().to(device)

# 定义损失函数和优化方式
criterion = nn.CrossEntropyLoss()  #损失函数为交叉熵,多用于多分类问题
optimizer = optim.SGD(
    net.parameters(), lr=LR, momentum=0.9,
    weight_decay=5e-4)  #优化方式为mini-batch momentum-SGD,并采用L2正则化(权重衰减)

# 训练
if __name__ == "__main__":
    best_acc = 85  #2 初始化best test accuracy
    print("Start Training, Resnet-18!")  # 定义遍历数据集的次数
    with open("acc.txt", "w") as f:
        with open("log.txt", "w") as f2:
            for epoch in range(pre_epoch, EPOCH):
                print('\nEpoch: %d' % (epoch + 1))
Пример #10
0
import torch.optim as optim
from trajectory_model.weighted_model import WeightedModel
from model.resnet import ResNet18
from sampler.sampler import Sampler
import random
import scipy.stats as st

COMP = 6

train_data = np.load('data/train_data/error_0.4_gaussian_0.1.npz')['data']
val_data = np.load('data/valid_data/valid.npz')['data']

index = np.load(
    'bin/record/stats_baseline_cifar_error_0.4_gaussian_0.1_first.npz')['pred']

resnet_model = ResNet18().to(device=torch.device('cuda'))
#resnet_model.load_state_dict(torch.load('bin/saved_model/params_resnet_error_0.4_gaussian_0.1_first.pkl'))

weighted_sampler = Sampler(index, COMP)

model = WeightedModel(COMP, resnet_model, weighted_sampler, train_data,
                      val_data)
prev_state = model.model.state_dict()

NUM = 1
EPOCH = 30
LR = 0.01


train_loss_history, train_recall_history, val_loss_history, val_recall_history = \
    model.train(optim.SGD(model.model.parameters(), lr=LR, momentum=0.9, weight_decay=5e-4), 30000, MODE='none', MAX_EPOCH=EPOCH)
Пример #11
0
def main():
    print('==> Preparing data..')
    transforms_train = transforms.Compose([
        transforms.RandomCrop(32, padding=4),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor()
    ])

    transforms_test = transforms.Compose([transforms.ToTensor()])

    mode = {'train': True, 'test': True}

    rate = np.squeeze([0.2, 0.5, 0.8])

    for iter in range(rate.size):

        model = ResNet(num_classes=args.num_class)
        if use_gpu:
            model = model.cuda()
            model = torch.nn.DataParallel(model)

        optimizer = torch.optim.Adam(model.parameters(), lr=args.learning_rate)

        image_datasets = {
            'train':
            Cifar10(root='./datasets',
                    train=True,
                    transform=None,
                    download=True),
            'test':
            Cifar10(root='./datasets',
                    train=False,
                    transform=None,
                    download=True)
        }

        trainData = image_datasets['train'].train_data
        trainLabel = image_datasets['train'].train_labels

        testData = image_datasets['test'].test_data
        testLabel = image_datasets['test'].test_labels

        true_label = np.squeeze(trainLabel).copy()

        trainLabel, actual_noise_rate = GN.noisify(
            nb_classes=args.num_class,
            train_labels=np.squeeze(trainLabel),
            noise_type='symmetric',
            noise_rate=rate[iter])

        trainData = np.array(trainData)
        trainLabel = np.squeeze(trainLabel)

        testData = np.array(testData)
        testLabel = np.squeeze(testLabel)

        train_data = DT(trainData=trainData,
                        trainLabel=trainLabel,
                        transform=transforms_train)
        train_data_test = DT(trainData=trainData,
                             trainLabel=trainLabel,
                             transform=transforms_test)
        test_data = DT(trainData=testData,
                       trainLabel=testLabel,
                       transform=transforms_test)

        train_loader = torch.utils.data.DataLoader(train_data,
                                                   batch_size=args.batch_size,
                                                   shuffle=True,
                                                   num_workers=args.workers)
        train_loader_test = torch.utils.data.DataLoader(
            train_data_test,
            batch_size=args.batch_size,
            shuffle=False,
            num_workers=args.workers)
        test_loader = torch.utils.data.DataLoader(test_data,
                                                  batch_size=args.batch_size,
                                                  shuffle=False,
                                                  num_workers=args.workers)

        train(model, optimizer, train_loader, test_loader, train_loader_test,
              true_label, rate[iter])
Пример #12
0
                                           shuffle=True,
                                           num_workers=8,
                                           pin_memory=True)
testset = torchvision.datasets.STL10(root='stl10',
                                     split='test',
                                     download=False,
                                     transform=test_transform)
test_loader = torch.utils.data.DataLoader(testset,
                                          batch_size=50,
                                          shuffle=False,
                                          num_workers=8,
                                          pin_memory=True)

if model_name == 'resnet':
    from model.resnet import ResNet18
    net = ResNet18(10)
elif model_name == 'lenet':
    from model.lenet import LeNet
    net = LeNet(10)
elif model_name == 'densenet':
    from model.densenet import DenseNet
    net = DenseNet(growthRate=12,
                   depth=40,
                   reduction=0.5,
                   bottleneck=True,
                   nClasses=10)
elif model_name == 'vgg':
    from model.vgg import VGG
    net = VGG('VGG16', num_classes=10)

if resume:
Пример #13
0
def main(args):
    # Enter all arguments that you want to be in the filename of the saved output
    ordered_args = [
        'dataset',
        'data_augmentation',
        'seed',
        'remove_percent',
        'burn_in_epochs',
        'remove_strategy',
        'noise_percent',
        'noise_labels',
        'noise_pixels_percent',
        'noise_pixels_std',
        'optimizer',
        'learning_rate',
    ]
    save_fname = '__'.join('{}_{}'.format(arg, args_dict[arg])
                           for arg in ordered_args)
    fname = os.path.join(args.output_dir, save_fname)
    if os.path.exists(fname + '__stats_dict.pkl'):
        redo = input(
            "There exists experiment result already, continue? [yes/no] ")
        if redo == 'no':
            exit()
        elif redo == 'yes':
            pass
        else:
            raise ValueError('wrong answer')

    os.makedirs(args.output_dir, exist_ok=True)

    # Set appropriate devices
    device = torch.device(args.device)
    print('run on device: {0}'.format(device))
    cudnn.benchmark = True  # Should make training go faster for large models

    # Set random seed for initialization
    torch.manual_seed(args.seed)
    if 'cuda' in args.device:
        torch.cuda.manual_seed(args.seed)
    npr.seed(args.seed)

    train_ds, test_ds, num_classes = get_data(args.dataset)

    if args.noise_percent > 0:
        assert not (args.noise_labels and (args.noise_pixels_percent > 0))
        if args.noise_labels:
            train_ds, noise_indexes = noise_labels(train_ds,
                                                   args.noise_percent, fname)
        if args.noise_pixels_percent:
            train_ds, noise_indexes = noise_pixels(train_ds,
                                                   args.noise_percent,
                                                   args.noise_pixels_percent,
                                                   args.noise_pixels_std,
                                                   fname)

    print('Training on ' + str(len(train_ds)) + ' examples')

    # Setup model
    if args.model == 'resnet18':
        model = ResNet18(num_classes=num_classes)
    elif args.model == 'wideresnet':
        if args.dataset == 'svhn':
            model = WideResNet(depth=16,
                               num_classes=num_classes,
                               widen_factor=8,
                               dropRate=0.4)
        else:
            model = WideResNet(depth=28,
                               num_classes=num_classes,
                               widen_factor=10,
                               dropRate=0.3)
    elif args.model == 'cnn':
        model = CNN(num_classes=num_classes)
    else:
        print(
            'Specified model not recognized. Options are: resnet18 and wideresnet'
        )

    # Setup loss
    model = model.to(args.device)
    criterion = torch.nn.CrossEntropyLoss().cuda()
    criterion.__init__(reduce=False)

    # Setup optimizer
    if args.optimizer == 'adam':
        model_optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
    elif args.optimizer == 'sgd':
        model_optimizer = torch.optim.SGD(model.parameters(),
                                          lr=args.learning_rate,
                                          momentum=0.9,
                                          nesterov=True,
                                          weight_decay=5e-4)
        scheduler = MultiStepLR(model_optimizer,
                                milestones=[60, 120, 160],
                                gamma=0.2)
    elif args.optimizer == 'sgd-const-lr':
        model_optimizer = torch.optim.SGD(model.parameters(),
                                          lr=args.learning_rate,
                                          momentum=0.9,
                                          nesterov=True,
                                          weight_decay=5e-4)
    else:
        print('Specified optimizer not recognized. Options are: adam and sgd')

    save_point = os.path.join(args.output_dir, 'checkpoint', args.dataset)
    os.makedirs(save_point, exist_ok=True)
    checkpoint_fname = os.path.join(save_point, save_fname + '.t7')

    # Initialize dictionary to save statistics for every example presentation
    example_stats = {}
    num_examples = len(train_ds)
    example_weights = np.ones(num_examples)

    elapsed_time = 0
    # train_idx = np.array(range(0, len(train_ds)))
    train_loader = DataLoader(train_ds,
                              batch_size=args.batch_size,
                              shuffle=True)
    for epoch in range(args.epochs):
        if args.remove_strategy != 'normal' and epoch >= args.burn_in_epochs:
            if 'sampling' in args.remove_strategy:
                # sampling by weight
                normalized_weights = example_weights / example_weights.sum()
                index_stats = example_stats.get('example_weights', [[], []])
                index_stats[1].append(normalized_weights)
                example_stats['example_weights'] = index_stats

                choice_num = int(num_examples *
                                 (1 - args.remove_percent / 100))
                train_idx = np.random.choice(range(num_examples),
                                             size=choice_num,
                                             replace=False,
                                             p=normalized_weights)
            elif args.remove_strategy == 'low-acc':
                remove_n = int(args.remove_percent * num_examples / 100)
                losses = []
                for idx in range(num_examples):
                    losses.append(example_stats[idx][0][epoch - 1])
                losses = np.array(losses)
                sorted_indexes = np.argsort(losses)
                train_idx = sorted_indexes[:num_examples - remove_n]
            elif args.remove_strategy == 'all-noise':
                remove_n = int(args.remove_percent * num_examples / 100)
                if args.remove_percent <= args.noise_percent_labels:
                    remove_indexes = npr.choice(noise_indexes,
                                                remove_n,
                                                replace=False)
                    train_idx = np.setdiff1d(range(num_examples),
                                             remove_indexes)
                else:
                    train_idx = np.setdiff1d(range(num_examples),
                                             noise_indexes)
                    train_idx = npr.choice(train_idx,
                                           num_examples - remove_n,
                                           replace=False)
            else:
                # event method
                _, unlearned_per_presentation, _, first_learned = compute_forgetting_statistics(
                    example_stats, epoch)
                ordered_examples, ordered_values = sort_examples_by_forgetting(
                    [unlearned_per_presentation], [first_learned], epoch)
                train_idx = sample_dataset_by_forgetting(
                    train_ds, ordered_examples, ordered_values,
                    args.remove_percent, args.remove_strategy)
            sampler = torch.utils.data.SubsetRandomSampler(train_idx)
            train_loader = DataLoader(train_ds,
                                      batch_size=args.batch_size,
                                      sampler=sampler)

        start_time = time.time()
        train(args, model, criterion, device, train_loader, model_optimizer,
              epoch, example_stats)

        test_loader = DataLoader(test_ds, batch_size=32, shuffle=True)
        test(epoch, model, criterion, device, test_loader, example_stats,
             checkpoint_fname)

        if args.remove_strategy != 'normal' and epoch >= args.burn_in_epochs:
            # evaluate on removed data
            removed_idx = np.setdiff1d(range(num_examples), train_idx)
            sampler = torch.utils.data.SubsetRandomSampler(removed_idx)
            removed_loader = DataLoader(train_ds,
                                        batch_size=args.batch_size,
                                        sampler=sampler)
            evaluate_on_removed(model, criterion, device, removed_loader,
                                epoch, example_stats)

        if 'sampling' in args.remove_strategy:
            example_weights = update_example_weights(example_weights,
                                                     example_stats, epoch,
                                                     args.remove_strategy)

        epoch_time = time.time() - start_time
        elapsed_time += epoch_time
        print('| Elapsed time : %d:%02d:%02d' % (get_hms(elapsed_time)))

        # Update optimizer step
        if args.optimizer == 'sgd':
            scheduler.step(epoch)

        # Save the stats dictionary
        fname = os.path.join(args.output_dir, save_fname)
        with open(fname + "__stats_dict.pkl", "wb") as f:
            pickle.dump(example_stats, f)

        # Log the best train and test accuracy so far
        with open(fname + "__best_acc.txt", "w") as f:
            f.write('train test \n')
            f.write(str(max(example_stats['train'][1])))
            f.write(' ')
            f.write(str(max(example_stats['test'][1])))

MAX_EPOCH = 150
MAX_ACCURACY = 1
BATCH_SIZE = 100
LR = 0.1
N = 50000

valid = np.load('data/valid_data/valid.npz')['data']
test = np.load('data/valid_data/test.npz')['data']
data = np.load('data/train_data/clean.npz')['data']
index = np.load('data/train_data/clean.npz')['index']

print('Stage 1 training starts!')

model = TrackedModel(ResNet18(), data, test)
train_his, val_his, class_his, train_recall, val_recall = model.train(
    optim.SGD(model.model.parameters(), lr=LR, momentum=0.9, weight_decay=5e-4), BATCH=BATCH_SIZE, MAX_EPOCH=MAX_EPOCH, MAX_ACCURACY=MAX_ACCURACY, USE_VAL=True)

N, EPOCH_ONE = train_his.shape
his = np.zeros_like(train_his)
for i in range(N):
    his[i] = train_his[np.where(class_his==i)]
np.savez('bin/record/baseline_cifar_test_first', his=his, index=index, train_recall=train_recall, val_recall=val_recall)
torch.save(model.model.state_dict(), 'bin/saved_model/params_resnet18_clean_first.pkl')

MAX_EPOCH = 50
MAX_ACCURACY = 1
LR = 0.01

print('Stage 2 training starts!')
Пример #15
0
args = parser.parse_args()
pprint(args)

# check and create directories
if not os.path.exists(args.checkpoint):
    os.makedirs(args.checkpoint)

if not os.path.exists(args.log):
    os.makedirs(args.log)

arch = 'resnet18_'
filename = arch + args.dataset + '_' + str(args.num_class)
checkpoint_filename = os.path.join(args.checkpoint, filename + '.pt')

model = ResNet(num_classes=args.num_class)
criterion = torch.nn.CrossEntropyLoss(size_average=True)
weight_criterion = CE(aggregate='sum')

use_gpu = torch.cuda.is_available()

if use_gpu:
    model = model.cuda()
    criterion = criterion.cuda()
    weight_criterion.cuda()
    torch.cuda.manual_seed(args.seed)

optimizer = torch.optim.Adam(model.parameters(), lr=args.learning_rate)

# Adjust learning rate and betas for Adam Optimizer
n_epoch = 200
Пример #16
0
def run_cutout(dataset="cifar10",
               model="resnet18",
               epochs=200,
               batch_size=128,
               learning_rate=0.1,
               data_augmentation=False,
               cutout=False,
               n_holes=1,
               length=8,
               no_cuda=False,
               seed=0):
    cuda = not no_cuda and torch.cuda.is_available()
    cudnn.benchmark = True  # Should make training should go faster for large models

    torch.manual_seed(seed)
    if cuda:
        torch.cuda.manual_seed(seed)

    test_id = dataset + '_' + model

    # Image Preprocessing
    if dataset == 'svhn':
        normalize = transforms.Normalize(
            mean=[x / 255.0 for x in [109.9, 109.7, 113.8]],
            std=[x / 255.0 for x in [50.1, 50.6, 50.8]])
    else:
        normalize = transforms.Normalize(
            mean=[x / 255.0 for x in [125.3, 123.0, 113.9]],
            std=[x / 255.0 for x in [63.0, 62.1, 66.7]])

    train_transform = transforms.Compose([])
    if data_augmentation:
        train_transform.transforms.append(transforms.RandomCrop(32, padding=4))
        train_transform.transforms.append(transforms.RandomHorizontalFlip())
    train_transform.transforms.append(transforms.ToTensor())
    train_transform.transforms.append(normalize)
    if cutout:
        train_transform.transforms.append(
            Cutout(n_holes=n_holes, length=length))

    test_transform = transforms.Compose([transforms.ToTensor(), normalize])

    if dataset == 'cifar10':
        num_classes = 10
        train_dataset = datasets.CIFAR10(root='data/',
                                         train=True,
                                         transform=train_transform,
                                         download=True)

        test_dataset = datasets.CIFAR10(root='data/',
                                        train=False,
                                        transform=test_transform,
                                        download=True)
    elif dataset == 'cifar100':
        num_classes = 100
        train_dataset = datasets.CIFAR100(root='data/',
                                          train=True,
                                          transform=train_transform,
                                          download=True)

        test_dataset = datasets.CIFAR100(root='data/',
                                         train=False,
                                         transform=test_transform,
                                         download=True)
    elif dataset == 'svhn':
        num_classes = 10
        train_dataset = datasets.SVHN(root='data/',
                                      split='train',
                                      transform=train_transform,
                                      download=True)

        extra_dataset = datasets.SVHN(root='data/',
                                      split='extra',
                                      transform=train_transform,
                                      download=True)

        # Combine both training splits (https://arxiv.org/pdf/1605.07146.pdf)
        data = np.concatenate([train_dataset.data, extra_dataset.data], axis=0)
        labels = np.concatenate([train_dataset.labels, extra_dataset.labels],
                                axis=0)
        train_dataset.data = data
        train_dataset.labels = labels

        test_dataset = datasets.SVHN(root='data/',
                                     split='test',
                                     transform=test_transform,
                                     download=True)

    # Data Loader (Input Pipeline)
    train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
                                               batch_size=batch_size,
                                               shuffle=True,
                                               pin_memory=True,
                                               num_workers=2)

    test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
                                              batch_size=batch_size,
                                              shuffle=False,
                                              pin_memory=True,
                                              num_workers=2)

    if model == 'resnet18':
        cnn = ResNet18(num_classes=num_classes)
    elif model == 'wideresnet':
        if dataset == 'svhn':
            cnn = WideResNet(depth=16,
                             num_classes=num_classes,
                             widen_factor=8,
                             dropRate=0.4)
        else:
            cnn = WideResNet(depth=28,
                             num_classes=num_classes,
                             widen_factor=10,
                             dropRate=0.3)

    cnn = cnn.cuda()
    criterion = nn.CrossEntropyLoss().cuda()

    cnn_optimizer = torch.optim.SGD(cnn.parameters(),
                                    lr=learning_rate,
                                    momentum=0.9,
                                    nesterov=True,
                                    weight_decay=5e-4)

    if dataset == 'svhn':
        scheduler = MultiStepLR(cnn_optimizer, milestones=[80, 120], gamma=0.1)
    else:
        scheduler = MultiStepLR(cnn_optimizer,
                                milestones=[60, 120, 160],
                                gamma=0.2)

    #TODO: change path to relative path
    filename = "/beegfs/work/workspace/ws/fr_mn119-augment-0/logs/{}.csv".format(
        test_id)
    # filename = 'logs/' + test_id + '.csv'

    args = argparse.Namespace(
        **{
            "dataset": dataset,
            "model": model,
            "epochs": epochs,
            "batch_size": batch_size,
            "learning_rate": learning_rate,
            "data_augmentation": data_augmentation,
            "cutout": cutout,
            "n_holes": n_holes,
            "length": length,
            "no_cuda": no_cuda,
            "seed": seed
        })

    csv_logger = CSVLogger(args=args,
                           fieldnames=['epoch', 'train_acc', 'test_acc'],
                           filename=filename)

    def test(loader):
        cnn.eval()  # Change model to 'eval' mode (BN uses moving mean/var).
        correct = 0.
        total = 0.
        for images, labels in loader:
            if dataset == 'svhn':
                # SVHN labels are from 1 to 10, not 0 to 9, so subtract 1
                labels = labels.type_as(torch.LongTensor()).view(-1) - 1

            images = Variable(images, volatile=True).cuda()
            labels = Variable(labels, volatile=True).cuda()

            pred = cnn(images)

            pred = torch.max(pred.data, 1)[1]
            total += labels.size(0)
            correct += (pred == labels.data).sum()

        val_acc = correct / total
        cnn.train()
        return val_acc

    for epoch in range(epochs):

        xentropy_loss_avg = 0.
        correct = 0.
        total = 0.

        progress_bar = tqdm(train_loader)
        for i, (images, labels) in enumerate(progress_bar):
            progress_bar.set_description('Epoch ' + str(epoch))

            if dataset == 'svhn':
                # SVHN labels are from 1 to 10, not 0 to 9, so subtract 1
                labels = labels.type_as(torch.LongTensor()).view(-1) - 1

            images = Variable(images).cuda(async=True)
            labels = Variable(labels).cuda(async=True)

            cnn.zero_grad()
            pred = cnn(images)

            xentropy_loss = criterion(pred, labels)
            xentropy_loss.backward()
            cnn_optimizer.step()

            xentropy_loss_avg += xentropy_loss.data[0]

            # Calculate running average of accuracy
            _, pred = torch.max(pred.data, 1)
            total += labels.size(0)
            correct += (pred == labels.data).sum()
            accuracy = correct / total

            progress_bar.set_postfix(xentropy='%.3f' % (xentropy_loss_avg /
                                                        (i + 1)),
                                     acc='%.3f' % accuracy)

        test_acc = test(test_loader)
        tqdm.write('test_acc: %.3f' % (test_acc))

        scheduler.step(epoch)

        row = {
            'epoch': str(epoch),
            'train_acc': str(accuracy),
            'test_acc': str(test_acc)
        }
        csv_logger.writerow(row)

    # torch.save(cnn.state_dict(), 'checkpoints/' + test_id + '.pt')
    csv_logger.close()

    results = {
        'epoch': epoch,
        'train_error': 1 - accuracy,
        'test_error': 1 - test_acc
    }

    # validation error for hyperband
    return results
Пример #17
0
def main():
    # Training settings
    parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
    parser.add_argument('--batch-size',
                        type=int,
                        default=128,
                        metavar='N',
                        help='input batch size for training (default: 128)')
    parser.add_argument('--test-batch-size',
                        type=int,
                        default=1000,
                        metavar='N',
                        help='input batch size for testing (default: 1000)')
    parser.add_argument('--epochs',
                        type=int,
                        default=350,
                        metavar='N',
                        help='number of epochs to train (default: 350)')
    parser.add_argument('--lr',
                        type=float,
                        default=.1,
                        metavar='LR',
                        help='learning rate (default: 0.1)')
    parser.add_argument('--gamma',
                        type=float,
                        default=0.1,
                        metavar='M',
                        help='Learning rate step gamma (default: 0.1)')
    parser.add_argument('--no-cuda',
                        action='store_true',
                        default=False,
                        help='disables CUDA training')
    parser.add_argument('--dry-run',
                        action='store_true',
                        default=False,
                        help='quickly check a single pass')
    parser.add_argument('--seed',
                        type=int,
                        default=1,
                        metavar='S',
                        help='random seed (default: 1)')
    parser.add_argument(
        '--log-interval',
        type=int,
        default=10,
        metavar='N',
        help='how many batches to wait before logging training status')
    parser.add_argument('--save-model',
                        action='store_true',
                        default=False,
                        help='For Saving the current Model')
    args = parser.parse_args()
    use_cuda = not args.no_cuda and torch.cuda.is_available()

    torch.manual_seed(args.seed)

    device = torch.device("cuda" if use_cuda else "cpu")

    kwargs = {'batch_size': args.batch_size}
    if use_cuda:
        kwargs.update({
            'num_workers': 1,
            'pin_memory': True,
            'shuffle': True
        }, )

    transform_train = transforms.Compose([
        transforms.RandomCrop(32, padding=4),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize((0.4914, 0.4822, 0.4465),
                             (0.2023, 0.1994, 0.2010))
    ])
    transform_test = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize((0.4914, 0.4822, 0.4465),
                             (0.2023, 0.1994, 0.2010)),
    ])
    dataset1 = datasets.CIFAR10('./data',
                                train=True,
                                download=True,
                                transform=transform_train)
    dataset2 = datasets.CIFAR10('./data',
                                train=False,
                                transform=transform_test)
    train_loader = torch.utils.data.DataLoader(dataset1, **kwargs)
    test_loader = torch.utils.data.DataLoader(dataset2, **kwargs)

    # model = models.resnet18().to(device)
    model = ResNet18().to(device)
    criterion = nn.CrossEntropyLoss()
    optimizer = optim.SGD(model.parameters(),
                          lr=args.lr,
                          momentum=0.9,
                          weight_decay=5e-4)

    scheduler = MultiStepLR(optimizer, milestones=[150, 250], gamma=args.gamma)
    for epoch in range(1, args.epochs + 1):
        train(args, model, criterion, device, train_loader, optimizer, epoch)
        test(model, criterion, device, test_loader)
        scheduler.step()

    if args.save_model:
        torch.save(model.state_dict(), "mnist_cnn.pt")
Пример #18
0
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
                                           batch_size=args.batch_size,
                                           pin_memory=True,
                                           num_workers=2,
                                           sampler=get_sampler_classifier(train_loader, args.seed, args.prop))


test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
                                          batch_size=args.batch_size,
                                          shuffle=False,
                                          pin_memory=True,
                                          num_workers=2)

if args.model == 'resnet18':
    cnn = ResNet18(num_classes=num_classes, num_channels=num_channels)
elif args.model == 'wideresnet':
    cnn = WideResNet(depth=28, num_classes=num_classes, num_channels=num_channels, widen_factor=10, dropRate=0.5)

cnn = cnn.cuda()
criterion = nn.CrossEntropyLoss().cuda()
cnn_optimizer = torch.optim.SGD(cnn.parameters(), lr=args.learning_rate,
                                momentum=0.9, nesterov=True, weight_decay=5e-4)

scheduler = MultiStepLR(cnn_optimizer, milestones=[round(0.4*args.epochs), round(0.8*args.epochs)], gamma=0.1)

def test(loader):
    cnn.eval()    # Change model to 'eval' mode (BN uses moving mean/var).
    correct = 0.
    total = 0.
    for images, labels in loader: