Пример #1
0
 def __init__(self,
              channel=128,
              reduction=2,
              ksize=3,
              scale=3,
              stride=1,
              softmax_scale=10,
              average=True,
              conv=common.default_conv):
     super(NonLocalAttention, self).__init__()
     self.conv_match1 = common.BasicBlock(conv,
                                          channel,
                                          channel // reduction,
                                          1,
                                          bn=False,
                                          act=nn.PReLU())
     self.conv_match2 = common.BasicBlock(conv,
                                          channel,
                                          channel // reduction,
                                          1,
                                          bn=False,
                                          act=nn.PReLU())
     self.conv_assembly = common.BasicBlock(conv,
                                            channel,
                                            channel,
                                            1,
                                            bn=False,
                                            act=nn.PReLU())
Пример #2
0
    def __init__(self,
                 depth=12,
                 rgb_range=255,
                 n_colors=3,
                 n_feats=64,
                 scale=4,
                 conv=common.default_conv,
                 **kwargs):
        super(CSNLN_Model, self).__init__()

        # n_convblock = args.n_convblocks
        self.depth = depth
        kernel_size = 3

        rgb_mean = (0.4488, 0.4371, 0.4040)
        rgb_std = (1.0, 1.0, 1.0)
        self.sub_mean = common.MeanShift(rgb_range, rgb_mean, rgb_std)

        # define head module
        m_head = [
            common.BasicBlock(conv,
                              n_colors,
                              n_feats,
                              kernel_size,
                              stride=1,
                              bias=True,
                              bn=False,
                              act=nn.PReLU()),
            common.BasicBlock(conv,
                              n_feats,
                              n_feats,
                              kernel_size,
                              stride=1,
                              bias=True,
                              bn=False,
                              act=nn.PReLU())
        ]

        # define Self-Exemplar Mining Cell
        self.SEM = RecurrentProjection(n_feats, scale=scale)

        # define tail module
        m_tail = [
            nn.Conv2d(n_feats * self.depth,
                      n_colors,
                      kernel_size,
                      padding=(kernel_size // 2))
        ]

        self.add_mean = common.MeanShift(rgb_range, rgb_mean, rgb_std, 1)

        self.head = nn.Sequential(*m_head)
        self.tail = nn.Sequential(*m_tail)
Пример #3
0
 def basic_block(in_channels, out_channels, act):
     return common.BasicBlock(conv,
                              in_channels,
                              out_channels,
                              kernel_size,
                              bias=True,
                              bn=False,
                              act=act)
Пример #4
0
    def __init__(self,
                 channel=128,
                 reduction=2,
                 ksize=3,
                 scale=3,
                 stride=1,
                 softmax_scale=10,
                 average=True,
                 conv=common.default_conv):
        super(CrossScaleAttention, self).__init__()
        self.ksize = ksize
        self.stride = stride
        self.softmax_scale = softmax_scale

        self.scale = scale
        self.average = average
        escape_NaN = torch.FloatTensor([1e-4])
        self.register_buffer('escape_NaN', escape_NaN)
        self.conv_match_1 = common.BasicBlock(conv,
                                              channel,
                                              channel // reduction,
                                              1,
                                              bn=False,
                                              act=nn.PReLU())
        self.conv_match_2 = common.BasicBlock(conv,
                                              channel,
                                              channel // reduction,
                                              1,
                                              bn=False,
                                              act=nn.PReLU())
        self.conv_assembly = common.BasicBlock(conv,
                                               channel,
                                               channel,
                                               1,
                                               bn=False,
                                               act=nn.PReLU())
Пример #5
0
    def __init__(self,
                 in_channel,
                 kernel_size=3,
                 scale=2,
                 conv=common.default_conv):
        super(RecurrentProjection, self).__init__()
        self.scale = scale
        stride_conv_ksize, stride, padding = {
            2: (6, 2, 2),
            3: (9, 3, 3),
            4: (6, 2, 2)
        }[scale]

        self.multi_source_projection = MultisourceProjection(
            in_channel, kernel_size=kernel_size, scale=scale, conv=conv)
        self.down_sample_1 = nn.Sequential(*[
            nn.Conv2d(in_channel,
                      in_channel,
                      stride_conv_ksize,
                      stride=stride,
                      padding=padding),
            nn.PReLU()
        ])
        if scale != 4:
            self.down_sample_2 = nn.Sequential(*[
                nn.Conv2d(in_channel,
                          in_channel,
                          stride_conv_ksize,
                          stride=stride,
                          padding=padding),
                nn.PReLU()
            ])
        self.error_encode = nn.Sequential(*[
            nn.ConvTranspose2d(in_channel,
                               in_channel,
                               stride_conv_ksize,
                               stride=stride,
                               padding=padding),
            nn.PReLU()
        ])
        self.post_conv = common.BasicBlock(conv,
                                           in_channel,
                                           in_channel,
                                           kernel_size,
                                           stride=1,
                                           bias=True,
                                           act=nn.PReLU())
        if scale == 4:
            self.multi_source_projection_2 = MultisourceProjection(
                in_channel, kernel_size=kernel_size, scale=scale, conv=conv)
            self.down_sample_3 = nn.Sequential(*[
                nn.Conv2d(in_channel, in_channel, 8, stride=4, padding=2),
                nn.PReLU()
            ])
            self.down_sample_4 = nn.Sequential(*[
                nn.Conv2d(in_channel, in_channel, 8, stride=4, padding=2),
                nn.PReLU()
            ])
            self.error_encode_2 = nn.Sequential(*[
                nn.ConvTranspose2d(
                    in_channel, in_channel, 8, stride=4, padding=2),
                nn.PReLU()
            ])