Пример #1
0
parser.add_argument('--seed', dest='seed', default=666, type=int,
                    help='随机种子')  #
parser.add_argument('--gpu',
                    dest='gpu',
                    default=True,
                    type=bool,
                    help='是否使用gpu')  #
parser.add_argument('--max_epoch',
                    dest='max_epoch',
                    default=20,
                    type=int,
                    help='最大训练epoch')

args = parser.parse_args()  # 程序运行参数

config = Config()  # 模型配置PYTORCH_TRANSFORMERS_CACHE

torch.manual_seed(args.seed)
if torch.cuda.is_available():
    torch.cuda.manual_seed(args.seed)


def main():
    trainset, validset, testset = [], [], []
    if args.inference:  # 测试时只载入测试集
        with open(args.testset_path, 'r', encoding='utf8') as fr:
            for line in fr:
                testset.append(json.loads(line))
        print(f'载入测试集{len(testset)}条')
    else:  # 训练时载入训练集和验证集
        with open(args.trainset_path, 'r', encoding='utf8') as fr:
Пример #2
0
parser.add_argument('--seed', dest='seed', default=666, type=int,
                    help='随机种子')  #
parser.add_argument('--gpu',
                    dest='gpu',
                    default=True,
                    type=bool,
                    help='是否使用gpu')  #
parser.add_argument('--max_epoch',
                    dest='max_epoch',
                    default=40,
                    type=int,
                    help='最大训练epoch')

args = parser.parse_args()  # 程序运行参数

config = Config()  # 模型配置

torch.manual_seed(args.seed)
if torch.cuda.is_available():
    torch.cuda.manual_seed(args.seed)


def main():

    # 载入数据集
    trainset, validset, testset = [], [], []
    if args.inference:  # 测试时只载入测试集
        with open(args.testset_path, 'r', encoding='utf8') as fr:
            for line in fr:
                testset.append(json.loads(line))
        print('载入测试集%d条' % len(testset))
Пример #3
0
                    dest='embed_path',
                    default='data/embed.txt',
                    type=str,
                    help='词向量位置')
parser.add_argument('--vad_path',
                    dest='vad_path',
                    default='data/vad.txt',
                    type=str,
                    help='vad位置')
parser.add_argument('--gpu',
                    dest='gpu',
                    default=True,
                    type=bool,
                    help='是否使用gpu')
args = parser.parse_args()
config = Config()


def filter_by_emotion(args):
    vocab, embeds = [], []
    with open(args.embed_path, 'r', encoding='utf8') as fr:
        for line in fr:
            line = line.strip()
            word = line[:line.find(' ')]
            vec = line[line.find(' ') + 1:].split()
            embed = [float(v) for v in vec]
            assert len(embed) == config.embedding_size  # 检测词向量维度
            vocab.append(word)
            embeds.append(embed)
    print(f'载入词汇表: {len(vocab)}个')
    print(f'词向量维度: {config.embedding_size}')