def multi_dimensional_attention(rep_tensor, rep_mask, scope=None, keep_prob=1., is_train=None, wd=0., activation='elu', tensor_dict=None, name=None, reuse=None): bs, sl, vec = tf.shape(rep_tensor)[0], tf.shape(rep_tensor)[1], tf.shape( rep_tensor)[2] ivec = rep_tensor.get_shape()[2] with tf.variable_scope(scope or 'multi_dimensional_attention', reuse=reuse): map1 = bn_dense_layer(rep_tensor, ivec, True, 0., 'bn_dense_map1', activation, False, wd, keep_prob, is_train) map2 = bn_dense_layer(map1, ivec, True, 0., 'bn_dense_map2', 'linear', False, wd, keep_prob, is_train) map2_masked = exp_mask_for_high_rank(map2, rep_mask) soft = tf.nn.softmax(map2_masked, 1) # bs,sl,vec attn_output = tf.reduce_sum(soft * rep_tensor, 1) # bs, vec # save attn if tensor_dict is not None and name is not None: tensor_dict[name] = soft return attn_output
def traditional_attention(rep_tensor, rep_mask, scope=None, keep_prob=1., is_train=None, wd=0., activation='elu', tensor_dict=None, name=None, reuse=None): bs, sl, vec = tf.shape(rep_tensor)[0], tf.shape(rep_tensor)[1], tf.shape( rep_tensor)[2] ivec = rep_tensor.get_shape()[2] with tf.variable_scope(scope or 'traditional_attention', reuse=reuse): rep_tensor_map = bn_dense_layer(rep_tensor, ivec, True, 0., 'bn_dense_map', activation, False, wd, keep_prob, is_train) rep_tensor_logits = get_logits([rep_tensor_map], None, False, scope='self_attn_logits', mask=rep_mask, input_keep_prob=keep_prob, is_train=is_train) # bs,sl attn_res = softsel(rep_tensor, rep_tensor_logits, rep_mask) # bs,vec # save attn if tensor_dict is not None and name is not None: tensor_dict[name] = tf.nn.softmax(rep_tensor_logits) return attn_res
def bi_sru_recurrent_network( rep_tensor, rep_mask, is_train=None, keep_prob=1., wd=0., scope=None, hn=None, reuse=None): """ :param rep_tensor: [Tensor/tf.float32] rank is 3 with shape [batch_size/bs, max_sent_len/sl, vec] :param rep_mask: [Tensor/tf.bool]rank is 2 with shape [bs,sl] :param is_train: [Scalar Tensor/tf.bool]scalar tensor to indicate whether the mode is training or not :param keep_prob: [float] dropout keep probability in the range of (0,1) :param wd: [float]for L2 regularization, if !=0, add tensors to tf collection "reg_vars" :param scope: [str]variable scope name :param hn: :param :return: [Tensor/tf.float32] with shape [bs, sl, 2vec] for forward and backward """ bs, sl, vec = tf.shape(rep_tensor)[0], tf.shape(rep_tensor)[1], tf.shape(rep_tensor)[2] ivec = rep_tensor.get_shape().as_list()[2] ivec = hn or ivec with tf.variable_scope(scope or 'bi_sru_recurrent_network'): # U_d = bn_dense_layer([rep_tensor], 6 * ivec, False, 0., 'get_frc', 'linear', # False, wd, keep_prob, is_train) # bs, sl, 6vec # U_d_fw, U_d_bw = tf.split(U_d, 2, 2) with tf.variable_scope('forward'): U_d_fw = bn_dense_layer([rep_tensor], 3 * ivec, False, 0., 'get_frc_fw', 'linear', False, wd, keep_prob, is_train) # bs, sl, 6vec U_fw = tf.concat([rep_tensor, U_d_fw], -1) fw_SRUCell = SwitchableDropoutWrapper(SRUCell(ivec, tf.nn.tanh, reuse), is_train, keep_prob) fw_output, _ = dynamic_rnn( fw_SRUCell, U_fw, tf.reduce_sum(tf.cast(rep_mask, tf.int32), -1), dtype=tf.float32, scope='forward_sru') # bs, sl, vec with tf.variable_scope('backward'): U_d_bw = bn_dense_layer([rep_tensor], 3 * ivec, False, 0., 'get_frc_bw', 'linear', False, wd, keep_prob, is_train) # bs, sl, 6vec U_bw = tf.concat([rep_tensor, U_d_bw], -1) bw_SRUCell = SwitchableDropoutWrapper(SRUCell(ivec, tf.nn.tanh, reuse), is_train, keep_prob) bw_output, _ = bw_dynamic_rnn( bw_SRUCell, U_bw, tf.reduce_sum(tf.cast(rep_mask, tf.int32), -1), dtype=tf.float32, scope='backward_sru') # bs, sl, vec all_output = tf.concat([fw_output, bw_output], -1) # bs, sl, 2vec return all_output
def __call__(self, inputs, state, scope=None): """ :param inputs: [bs, vec] :param state: :param scope: :return: """ with tf.variable_scope(scope or "SRU_cell"): b_f = tf.get_variable('b_f', [self._num_units], dtype=tf.float32, initializer=tf.constant_initializer(0)) b_r = tf.get_variable('b_r', [self._num_units], dtype=tf.float32, initializer=tf.constant_initializer(0)) U_d = bn_dense_layer(inputs, 3 * self._num_units, False, 0., 'get_frc', 'linear', keep_prob=self.keep_prob, is_train=self.is_train) # bs, 3vec x_t = tf.identity(inputs, 'x_t') x_dt, f_t, r_t = tf.split(U_d, 3, 1) f_t = tf.nn.sigmoid(f_t + b_f) r_t = tf.nn.sigmoid(r_t + b_r) c_t = f_t * state + (1 - f_t) * x_dt h_t = r_t * self._activation(c_t) + (1 - r_t) * x_t return h_t, c_t
def directional_attention_with_dense(rep_tensor, rep_mask, direction=None, scope=None, keep_prob=1., is_train=None, wd=0., activation='elu', tensor_dict=None, name=None, hn=None): def scaled_tanh(x, scale=5.): return scale * tf.nn.tanh(1. / scale * x) bs, sl, vec = tf.shape(rep_tensor)[0], tf.shape(rep_tensor)[1], tf.shape( rep_tensor)[2] ivec = rep_tensor.get_shape().as_list()[2] ivec = hn or ivec with tf.variable_scope(scope or 'directional_attention_%s' % direction or 'diag'): # mask generation sl_indices = tf.range(sl, dtype=tf.int32) sl_col, sl_row = tf.meshgrid(sl_indices, sl_indices) if direction is None: direct_mask = tf.cast( tf.diag(-tf.ones([sl], tf.int32)) + 1, tf.bool) else: if direction == 'forward': direct_mask = tf.greater(sl_row, sl_col) else: direct_mask = tf.greater(sl_col, sl_row) direct_mask_tile = tf.tile(tf.expand_dims(direct_mask, 0), [bs, 1, 1]) # bs,sl,sl rep_mask_tile = tf.tile(tf.expand_dims(rep_mask, 1), [1, sl, 1]) # bs,sl,sl attn_mask = tf.logical_and(direct_mask_tile, rep_mask_tile) # bs,sl,sl # non-linear rep_map = bn_dense_layer(rep_tensor, ivec, True, 0., 'bn_dense_map', activation, False, wd, keep_prob, is_train) rep_map_tile = tf.tile(tf.expand_dims(rep_map, 1), [1, sl, 1, 1]) # bs,sl,sl,vec rep_map_dp = dropout(rep_map, keep_prob, is_train) # attention with tf.variable_scope('attention'): # bs,sl,sl,vec f_bias = tf.get_variable('f_bias', [ivec], tf.float32, tf.constant_initializer(0.)) dependent = linear(rep_map_dp, ivec, False, scope='linear_dependent', is_train=is_train) # bs,sl,vec dependent_etd = tf.expand_dims(dependent, 1) # bs,1,sl,vec head = linear(rep_map_dp, ivec, False, scope='linear_head', is_train=is_train) # bs,sl,vec head_etd = tf.expand_dims(head, 2) # bs,sl,1,vec logits = scaled_tanh(dependent_etd + head_etd + f_bias, 5.0) # bs,sl,sl,vec logits_masked = exp_mask_for_high_rank(logits, attn_mask) attn_score = tf.nn.softmax(logits_masked, 2) # bs,sl,sl,vec attn_score = mask_for_high_rank(attn_score, attn_mask) attn_result = tf.reduce_sum(attn_score * rep_map_tile, 2) # bs,sl,vec with tf.variable_scope('output'): o_bias = tf.get_variable('o_bias', [ivec], tf.float32, tf.constant_initializer(0.)) # input gate fusion_gate = tf.nn.sigmoid( linear(rep_map, ivec, True, 0., 'linear_fusion_i', False, wd, keep_prob, is_train) + linear(attn_result, ivec, True, 0., 'linear_fusion_a', False, wd, keep_prob, is_train) + o_bias) output = fusion_gate * rep_map + (1 - fusion_gate) * attn_result output = mask_for_high_rank(output, rep_mask) # save attn if tensor_dict is not None and name is not None: tensor_dict[name + '_dependent'] = dependent tensor_dict[name + '_head'] = head tensor_dict[name] = attn_score tensor_dict[name + '_gate'] = fusion_gate return output
def simple_block_attention(rep_tensor, rep_mask, block_len=5, scope=None, direction=None, keep_prob=1., is_train=None, wd=0., activation='elu', hn=None): assert direction is not None def scaled_tanh(x, scale=5.): return scale * tf.nn.tanh(1. / scale * x) bs, sl, vec = tf.shape(rep_tensor)[0], tf.shape(rep_tensor)[1], tf.shape( rep_tensor)[2] org_ivec = rep_tensor.get_shape().as_list()[2] ivec = hn or org_ivec with tf.variable_scope(scope or 'block_simple'): # @1. split sequence with tf.variable_scope('split_seq'): block_num = tf.cast( tf.ceil( tf.divide(tf.cast(sl, tf.float32), tf.cast(block_len, tf.float32))), tf.int32) comp_len = block_num * block_len - sl rep_tensor_comp = tf.concat( [rep_tensor, tf.zeros([bs, comp_len, org_ivec], tf.float32)], 1) rep_mask_comp = tf.concat([ rep_mask, tf.cast(tf.zeros([bs, comp_len], tf.int32), tf.bool) ], 1) rep_tensor_split = tf.reshape( rep_tensor_comp, [bs, block_num, block_len, org_ivec]) # bs,bn,bl,d rep_mask_split = tf.reshape(rep_mask_comp, [bs, block_num, block_len]) # bs,bn,bl # non-linear rep_map = bn_dense_layer(rep_tensor_split, ivec, True, 0., 'bn_dense_map', activation, False, wd, keep_prob, is_train) # bs,bn,bl,vec rep_map_tile = tf.tile(tf.expand_dims(rep_map, 2), [1, 1, block_len, 1, 1]) # bs,bn,bl,bl,vec # rep_map_dp = dropout(rep_map, keep_prob, is_train) bn = block_num bl = block_len with tf.variable_scope('self_attention'): # @2.self-attention in block # mask generation sl_indices = tf.range(block_len, dtype=tf.int32) sl_col, sl_row = tf.meshgrid(sl_indices, sl_indices) if direction == 'forward': direct_mask = tf.greater(sl_row, sl_col) # bl,bl else: direct_mask = tf.greater(sl_col, sl_row) # bl,bl direct_mask_tile = tf.tile( tf.expand_dims(tf.expand_dims(direct_mask, 0), 0), [bs, bn, 1, 1]) # bs,bn,bl,bl rep_mask_tile_1 = tf.tile(tf.expand_dims(rep_mask_split, 2), [1, 1, bl, 1]) # bs,bn,bl,bl rep_mask_tile_2 = tf.tile(tf.expand_dims(rep_mask_split, 3), [1, 1, 1, bl]) # bs,bn,bl,bl rep_mask_tile = tf.logical_and(rep_mask_tile_1, rep_mask_tile_2) attn_mask = tf.logical_and(direct_mask_tile, rep_mask_tile, name='attn_mask') # bs,bn,bl,bl # attention f_bias = tf.get_variable('f_bias', [ivec], tf.float32, tf.constant_initializer(0.)) dependent_head = linear(rep_map, 2 * ivec, False, 0., 'linear_dependent_head', False, wd, keep_prob, is_train) # bs,bn,bl,2vec dependent, head = tf.split(dependent_head, 2, 3) dependent_etd = tf.expand_dims(dependent, 2) # bs,bn,1,bl,vec head_etd = tf.expand_dims(head, 3) # bs,bn,bl,1,vec logits = scaled_tanh(dependent_etd + head_etd + f_bias, 5.0) # bs,bn,bl,bl,vec logits_masked = exp_mask_for_high_rank(logits, attn_mask) attn_score = tf.nn.softmax(logits_masked, 3) # bs,bn,bl,bl,vec attn_score = mask_for_high_rank(attn_score, attn_mask) # bs,bn,bl,bl,vec self_attn_result = tf.reduce_sum(attn_score * rep_map_tile, 3) # bs,bn,bl,vec with tf.variable_scope('source2token_self_attn'): inter_block_logits = bn_dense_layer(self_attn_result, ivec, True, 0., 'bn_dense_map', 'linear', False, wd, keep_prob, is_train) # bs,bn,bl,vec inter_block_logits_masked = exp_mask_for_high_rank( inter_block_logits, rep_mask_split) # bs,bn,bl,vec inter_block_soft = tf.nn.softmax(inter_block_logits_masked, 2) # bs,bn,bl,vec inter_block_attn_output = tf.reduce_sum( self_attn_result * inter_block_soft, 2) # bs,bn,vec with tf.variable_scope('self_attn_inter_block'): inter_block_attn_output_mask = tf.cast(tf.ones([bs, bn], tf.int32), tf.bool) block_ct_res = directional_attention_with_dense( inter_block_attn_output, inter_block_attn_output_mask, direction, 'disa', keep_prob, is_train, wd, activation) # [bs,bn,vec] block_ct_res_tile = tf.tile(tf.expand_dims( block_ct_res, 2), [1, 1, bl, 1]) #[bs,bn,vec]->[bs,bn,bl,vec] with tf.variable_scope('combination'): # input:1.rep_map[bs,bn,bl,vec]; 2.self_attn_result[bs,bn,bl,vec]; 3.rnn_res_tile[bs,bn,bl,vec] rep_tensor_with_ct = tf.concat( [rep_map, self_attn_result, block_ct_res_tile], -1) # [bs,bn,bl,3vec] new_context_and_gate = linear(rep_tensor_with_ct, 2 * ivec, True, 0., 'linear_new_context_and_gate', False, wd, keep_prob, is_train) # [bs,bn,bl,2vec] new_context, gate = tf.split(new_context_and_gate, 2, 3) # bs,bn,bl,vec if activation == "relu": new_context_act = tf.nn.relu(new_context) elif activation == "elu": new_context_act = tf.nn.elu(new_context) elif activation == "linear": new_context_act = tf.identity(new_context) else: raise RuntimeError gate_sig = tf.nn.sigmoid(gate) combination_res = gate_sig * new_context_act + ( 1 - gate_sig) * rep_map # bs,bn,bl,vec with tf.variable_scope('restore_original_length'): combination_res_reshape = tf.reshape( combination_res, [bs, bn * bl, ivec]) # bs,bn*bl,vec output = combination_res_reshape[:, :sl, :] return output