Пример #1
0
def multi_dimensional_attention(rep_tensor,
                                rep_mask,
                                scope=None,
                                keep_prob=1.,
                                is_train=None,
                                wd=0.,
                                activation='elu',
                                tensor_dict=None,
                                name=None,
                                reuse=None):
    bs, sl, vec = tf.shape(rep_tensor)[0], tf.shape(rep_tensor)[1], tf.shape(
        rep_tensor)[2]
    ivec = rep_tensor.get_shape()[2]
    with tf.variable_scope(scope or 'multi_dimensional_attention',
                           reuse=reuse):
        map1 = bn_dense_layer(rep_tensor, ivec, True, 0., 'bn_dense_map1',
                              activation, False, wd, keep_prob, is_train)
        map2 = bn_dense_layer(map1, ivec, True, 0., 'bn_dense_map2', 'linear',
                              False, wd, keep_prob, is_train)
        map2_masked = exp_mask_for_high_rank(map2, rep_mask)

        soft = tf.nn.softmax(map2_masked, 1)  # bs,sl,vec
        attn_output = tf.reduce_sum(soft * rep_tensor, 1)  # bs, vec

        # save attn
        if tensor_dict is not None and name is not None:
            tensor_dict[name] = soft

        return attn_output
Пример #2
0
def traditional_attention(rep_tensor,
                          rep_mask,
                          scope=None,
                          keep_prob=1.,
                          is_train=None,
                          wd=0.,
                          activation='elu',
                          tensor_dict=None,
                          name=None,
                          reuse=None):
    bs, sl, vec = tf.shape(rep_tensor)[0], tf.shape(rep_tensor)[1], tf.shape(
        rep_tensor)[2]
    ivec = rep_tensor.get_shape()[2]
    with tf.variable_scope(scope or 'traditional_attention', reuse=reuse):
        rep_tensor_map = bn_dense_layer(rep_tensor, ivec, True, 0.,
                                        'bn_dense_map', activation, False, wd,
                                        keep_prob, is_train)

        rep_tensor_logits = get_logits([rep_tensor_map],
                                       None,
                                       False,
                                       scope='self_attn_logits',
                                       mask=rep_mask,
                                       input_keep_prob=keep_prob,
                                       is_train=is_train)  # bs,sl
        attn_res = softsel(rep_tensor, rep_tensor_logits, rep_mask)  # bs,vec

        # save attn
        if tensor_dict is not None and name is not None:
            tensor_dict[name] = tf.nn.softmax(rep_tensor_logits)

        return attn_res
Пример #3
0
def bi_sru_recurrent_network(
        rep_tensor, rep_mask, is_train=None, keep_prob=1., wd=0.,
        scope=None, hn=None, reuse=None):
    """

    :param rep_tensor: [Tensor/tf.float32] rank is 3 with shape [batch_size/bs, max_sent_len/sl, vec]
    :param rep_mask: [Tensor/tf.bool]rank is 2 with shape [bs,sl]
    :param is_train: [Scalar Tensor/tf.bool]scalar tensor to indicate whether the mode is training or not
    :param keep_prob: [float] dropout keep probability in the range of (0,1)
    :param wd: [float]for L2 regularization, if !=0, add tensors to tf collection "reg_vars"
    :param scope: [str]variable scope name
    :param hn:
    :param
    :return: [Tensor/tf.float32] with shape [bs, sl, 2vec] for forward and backward
    """
    bs, sl, vec = tf.shape(rep_tensor)[0], tf.shape(rep_tensor)[1], tf.shape(rep_tensor)[2]
    ivec = rep_tensor.get_shape().as_list()[2]
    ivec = hn or ivec

    with tf.variable_scope(scope or 'bi_sru_recurrent_network'):
        # U_d = bn_dense_layer([rep_tensor], 6 * ivec, False, 0., 'get_frc', 'linear',
        #                    False, wd, keep_prob, is_train)  # bs, sl, 6vec
        # U_d_fw, U_d_bw = tf.split(U_d, 2, 2)
        with tf.variable_scope('forward'):
            U_d_fw = bn_dense_layer([rep_tensor], 3 * ivec, False, 0., 'get_frc_fw', 'linear',
                                    False, wd, keep_prob, is_train)  # bs, sl, 6vec
            U_fw = tf.concat([rep_tensor, U_d_fw], -1)
            fw_SRUCell = SwitchableDropoutWrapper(SRUCell(ivec, tf.nn.tanh, reuse), is_train, keep_prob)
            fw_output, _ = dynamic_rnn(
                fw_SRUCell, U_fw, tf.reduce_sum(tf.cast(rep_mask, tf.int32), -1),
                dtype=tf.float32, scope='forward_sru')  # bs, sl, vec

        with tf.variable_scope('backward'):
            U_d_bw = bn_dense_layer([rep_tensor], 3 * ivec, False, 0., 'get_frc_bw', 'linear',
                                    False, wd, keep_prob, is_train)  # bs, sl, 6vec
            U_bw = tf.concat([rep_tensor, U_d_bw], -1)
            bw_SRUCell = SwitchableDropoutWrapper(SRUCell(ivec, tf.nn.tanh, reuse), is_train, keep_prob)
            bw_output, _ = bw_dynamic_rnn(
                bw_SRUCell, U_bw, tf.reduce_sum(tf.cast(rep_mask, tf.int32), -1),
                dtype=tf.float32, scope='backward_sru')  # bs, sl, vec

        all_output = tf.concat([fw_output, bw_output], -1)  # bs, sl, 2vec
        return all_output
Пример #4
0
    def __call__(self, inputs, state, scope=None):
        """

        :param inputs: [bs, vec]
        :param state:
        :param scope:
        :return:
        """
        with tf.variable_scope(scope or "SRU_cell"):
            b_f = tf.get_variable('b_f', [self._num_units], dtype=tf.float32,
                                  initializer=tf.constant_initializer(0))
            b_r = tf.get_variable('b_r', [self._num_units], dtype=tf.float32,
                                  initializer=tf.constant_initializer(0))
            U_d = bn_dense_layer(inputs, 3 * self._num_units, False, 0., 'get_frc', 
                                'linear', keep_prob=self.keep_prob, 
                                is_train=self.is_train)  # bs, 3vec
            x_t = tf.identity(inputs, 'x_t')
            x_dt, f_t, r_t = tf.split(U_d, 3, 1)
            f_t = tf.nn.sigmoid(f_t + b_f)
            r_t = tf.nn.sigmoid(r_t + b_r)
            c_t = f_t * state + (1 - f_t) * x_dt
            h_t = r_t * self._activation(c_t) + (1 - r_t) * x_t
            return h_t, c_t
Пример #5
0
def directional_attention_with_dense(rep_tensor,
                                     rep_mask,
                                     direction=None,
                                     scope=None,
                                     keep_prob=1.,
                                     is_train=None,
                                     wd=0.,
                                     activation='elu',
                                     tensor_dict=None,
                                     name=None,
                                     hn=None):
    def scaled_tanh(x, scale=5.):
        return scale * tf.nn.tanh(1. / scale * x)

    bs, sl, vec = tf.shape(rep_tensor)[0], tf.shape(rep_tensor)[1], tf.shape(
        rep_tensor)[2]
    ivec = rep_tensor.get_shape().as_list()[2]
    ivec = hn or ivec
    with tf.variable_scope(scope or 'directional_attention_%s' % direction
                           or 'diag'):
        # mask generation
        sl_indices = tf.range(sl, dtype=tf.int32)
        sl_col, sl_row = tf.meshgrid(sl_indices, sl_indices)
        if direction is None:
            direct_mask = tf.cast(
                tf.diag(-tf.ones([sl], tf.int32)) + 1, tf.bool)
        else:
            if direction == 'forward':
                direct_mask = tf.greater(sl_row, sl_col)
            else:
                direct_mask = tf.greater(sl_col, sl_row)
        direct_mask_tile = tf.tile(tf.expand_dims(direct_mask, 0),
                                   [bs, 1, 1])  # bs,sl,sl
        rep_mask_tile = tf.tile(tf.expand_dims(rep_mask, 1),
                                [1, sl, 1])  # bs,sl,sl
        attn_mask = tf.logical_and(direct_mask_tile, rep_mask_tile)  # bs,sl,sl

        # non-linear
        rep_map = bn_dense_layer(rep_tensor, ivec, True, 0., 'bn_dense_map',
                                 activation, False, wd, keep_prob, is_train)
        rep_map_tile = tf.tile(tf.expand_dims(rep_map, 1),
                               [1, sl, 1, 1])  # bs,sl,sl,vec
        rep_map_dp = dropout(rep_map, keep_prob, is_train)

        # attention
        with tf.variable_scope('attention'):  # bs,sl,sl,vec
            f_bias = tf.get_variable('f_bias', [ivec], tf.float32,
                                     tf.constant_initializer(0.))
            dependent = linear(rep_map_dp,
                               ivec,
                               False,
                               scope='linear_dependent',
                               is_train=is_train)  # bs,sl,vec
            dependent_etd = tf.expand_dims(dependent, 1)  # bs,1,sl,vec
            head = linear(rep_map_dp,
                          ivec,
                          False,
                          scope='linear_head',
                          is_train=is_train)  # bs,sl,vec
            head_etd = tf.expand_dims(head, 2)  # bs,sl,1,vec

            logits = scaled_tanh(dependent_etd + head_etd + f_bias,
                                 5.0)  # bs,sl,sl,vec

            logits_masked = exp_mask_for_high_rank(logits, attn_mask)
            attn_score = tf.nn.softmax(logits_masked, 2)  # bs,sl,sl,vec
            attn_score = mask_for_high_rank(attn_score, attn_mask)

            attn_result = tf.reduce_sum(attn_score * rep_map_tile,
                                        2)  # bs,sl,vec

        with tf.variable_scope('output'):
            o_bias = tf.get_variable('o_bias', [ivec], tf.float32,
                                     tf.constant_initializer(0.))
            # input gate
            fusion_gate = tf.nn.sigmoid(
                linear(rep_map, ivec, True, 0., 'linear_fusion_i', False, wd,
                       keep_prob, is_train) +
                linear(attn_result, ivec, True, 0., 'linear_fusion_a', False,
                       wd, keep_prob, is_train) + o_bias)
            output = fusion_gate * rep_map + (1 - fusion_gate) * attn_result
            output = mask_for_high_rank(output, rep_mask)

        # save attn
        if tensor_dict is not None and name is not None:
            tensor_dict[name + '_dependent'] = dependent
            tensor_dict[name + '_head'] = head
            tensor_dict[name] = attn_score
            tensor_dict[name + '_gate'] = fusion_gate
        return output
Пример #6
0
def simple_block_attention(rep_tensor,
                           rep_mask,
                           block_len=5,
                           scope=None,
                           direction=None,
                           keep_prob=1.,
                           is_train=None,
                           wd=0.,
                           activation='elu',
                           hn=None):
    assert direction is not None

    def scaled_tanh(x, scale=5.):
        return scale * tf.nn.tanh(1. / scale * x)

    bs, sl, vec = tf.shape(rep_tensor)[0], tf.shape(rep_tensor)[1], tf.shape(
        rep_tensor)[2]
    org_ivec = rep_tensor.get_shape().as_list()[2]
    ivec = hn or org_ivec
    with tf.variable_scope(scope or 'block_simple'):
        # @1. split sequence
        with tf.variable_scope('split_seq'):
            block_num = tf.cast(
                tf.ceil(
                    tf.divide(tf.cast(sl, tf.float32),
                              tf.cast(block_len, tf.float32))), tf.int32)
            comp_len = block_num * block_len - sl

            rep_tensor_comp = tf.concat(
                [rep_tensor,
                 tf.zeros([bs, comp_len, org_ivec], tf.float32)], 1)
            rep_mask_comp = tf.concat([
                rep_mask,
                tf.cast(tf.zeros([bs, comp_len], tf.int32), tf.bool)
            ], 1)

            rep_tensor_split = tf.reshape(
                rep_tensor_comp,
                [bs, block_num, block_len, org_ivec])  # bs,bn,bl,d
            rep_mask_split = tf.reshape(rep_mask_comp,
                                        [bs, block_num, block_len])  # bs,bn,bl

            # non-linear
            rep_map = bn_dense_layer(rep_tensor_split, ivec, True, 0.,
                                     'bn_dense_map', activation, False, wd,
                                     keep_prob, is_train)  # bs,bn,bl,vec
            rep_map_tile = tf.tile(tf.expand_dims(rep_map, 2),
                                   [1, 1, block_len, 1, 1])  # bs,bn,bl,bl,vec
            # rep_map_dp = dropout(rep_map, keep_prob, is_train)
            bn = block_num
            bl = block_len

        with tf.variable_scope('self_attention'):
            # @2.self-attention in block
            # mask generation
            sl_indices = tf.range(block_len, dtype=tf.int32)
            sl_col, sl_row = tf.meshgrid(sl_indices, sl_indices)
            if direction == 'forward':
                direct_mask = tf.greater(sl_row, sl_col)  # bl,bl
            else:
                direct_mask = tf.greater(sl_col, sl_row)  # bl,bl
            direct_mask_tile = tf.tile(
                tf.expand_dims(tf.expand_dims(direct_mask, 0), 0),
                [bs, bn, 1, 1])  # bs,bn,bl,bl
            rep_mask_tile_1 = tf.tile(tf.expand_dims(rep_mask_split, 2),
                                      [1, 1, bl, 1])  # bs,bn,bl,bl
            rep_mask_tile_2 = tf.tile(tf.expand_dims(rep_mask_split, 3),
                                      [1, 1, 1, bl])  # bs,bn,bl,bl
            rep_mask_tile = tf.logical_and(rep_mask_tile_1, rep_mask_tile_2)
            attn_mask = tf.logical_and(direct_mask_tile,
                                       rep_mask_tile,
                                       name='attn_mask')  # bs,bn,bl,bl

            # attention
            f_bias = tf.get_variable('f_bias', [ivec], tf.float32,
                                     tf.constant_initializer(0.))
            dependent_head = linear(rep_map, 2 * ivec, False, 0.,
                                    'linear_dependent_head', False, wd,
                                    keep_prob, is_train)  # bs,bn,bl,2vec
            dependent, head = tf.split(dependent_head, 2, 3)
            dependent_etd = tf.expand_dims(dependent, 2)  # bs,bn,1,bl,vec
            head_etd = tf.expand_dims(head, 3)  # bs,bn,bl,1,vec
            logits = scaled_tanh(dependent_etd + head_etd + f_bias,
                                 5.0)  # bs,bn,bl,bl,vec
            logits_masked = exp_mask_for_high_rank(logits, attn_mask)
            attn_score = tf.nn.softmax(logits_masked, 3)  # bs,bn,bl,bl,vec
            attn_score = mask_for_high_rank(attn_score,
                                            attn_mask)  # bs,bn,bl,bl,vec
            self_attn_result = tf.reduce_sum(attn_score * rep_map_tile,
                                             3)  # bs,bn,bl,vec

        with tf.variable_scope('source2token_self_attn'):
            inter_block_logits = bn_dense_layer(self_attn_result, ivec, True,
                                                0., 'bn_dense_map', 'linear',
                                                False, wd, keep_prob,
                                                is_train)  # bs,bn,bl,vec
            inter_block_logits_masked = exp_mask_for_high_rank(
                inter_block_logits, rep_mask_split)  # bs,bn,bl,vec
            inter_block_soft = tf.nn.softmax(inter_block_logits_masked,
                                             2)  # bs,bn,bl,vec
            inter_block_attn_output = tf.reduce_sum(
                self_attn_result * inter_block_soft, 2)  # bs,bn,vec

        with tf.variable_scope('self_attn_inter_block'):
            inter_block_attn_output_mask = tf.cast(tf.ones([bs, bn], tf.int32),
                                                   tf.bool)
            block_ct_res = directional_attention_with_dense(
                inter_block_attn_output, inter_block_attn_output_mask,
                direction, 'disa', keep_prob, is_train, wd,
                activation)  # [bs,bn,vec]

            block_ct_res_tile = tf.tile(tf.expand_dims(
                block_ct_res, 2), [1, 1, bl, 1])  #[bs,bn,vec]->[bs,bn,bl,vec]

        with tf.variable_scope('combination'):
            # input:1.rep_map[bs,bn,bl,vec]; 2.self_attn_result[bs,bn,bl,vec]; 3.rnn_res_tile[bs,bn,bl,vec]
            rep_tensor_with_ct = tf.concat(
                [rep_map, self_attn_result, block_ct_res_tile],
                -1)  # [bs,bn,bl,3vec]
            new_context_and_gate = linear(rep_tensor_with_ct, 2 * ivec, True,
                                          0., 'linear_new_context_and_gate',
                                          False, wd, keep_prob,
                                          is_train)  # [bs,bn,bl,2vec]
            new_context, gate = tf.split(new_context_and_gate, 2,
                                         3)  # bs,bn,bl,vec
            if activation == "relu":
                new_context_act = tf.nn.relu(new_context)
            elif activation == "elu":
                new_context_act = tf.nn.elu(new_context)
            elif activation == "linear":
                new_context_act = tf.identity(new_context)
            else:
                raise RuntimeError
            gate_sig = tf.nn.sigmoid(gate)
            combination_res = gate_sig * new_context_act + (
                1 - gate_sig) * rep_map  # bs,bn,bl,vec

        with tf.variable_scope('restore_original_length'):
            combination_res_reshape = tf.reshape(
                combination_res, [bs, bn * bl, ivec])  # bs,bn*bl,vec
            output = combination_res_reshape[:, :sl, :]
            return output