rs(interpreter.get_tensor(output_details[2]['index']))] #output_data = interpreter.get_tensor(output_details[0]['index']) print('output_data shape is ', output_data.shape) print('output data is ', output_data) #results = np.squeeze(output_data) #top_k = results.argsort()[-5:][::-1] #print('top_k = ', top_k) labels = load_labels(args.label_file) print(labels) yolo = YOLO(0.6, 0.5) boxes, classes, scores = yolo.predict(input_data, image.size, outs = output_data) #print(boxes) if boxes is not None: draw(image, boxes, scores, classes, labels) image = image.save('detected.jpg') ''' for i in top_k: if floating_model: print('i=', i) print('reslut[i] = ', results[i]) print('labels[i] = ', labels[i]) #print('{:08.6f}: {}'.format(float(results[i]), labels[i]))
dictionary = { "front": 0, "front-side": 1, "rear": 2, "rear-side": 3, "side": 4 } x_train = [] y_train = [] for folder in folders: images = os.listdir(path + "\\" + folder) for image in images: im_path = path + "\\" + folder + "\\" + image image = cv2.imread(im_path) pimage = process_image(image) boxes, classes, scores = yolo.predict(pimage, image.shape) #det_image = detect_image(image, yolo, all_classes) # cv2.imshow("detected", det_image) if classes is None: print(im_path) continue S = 0 maxBox = [] if boxes is None: print(im_path) continue for box in boxes: x, y, w, h = box if w * h > S: