Пример #1
0
def main():
    data_loader = DataLoader(args)
    if (args.process_data):
        data_loader.process_data()
        return
    torch.cuda.set_device(args.gpu_device)

    data_loader.load()
    if (args.model == "rnn"):
        myModel = model.RNNModel(args, data_loader.vocab_size, 8,
                                 data_loader.id_2_vec).cuda()
    elif (args.model == "cnn"):
        myModel = model.CNNModel(args, data_loader.vocab_size, 8,
                                 data_loader.id_2_vec).cuda()
    elif (args.model == "baseline"):
        myModel = model.Baseline(args, data_loader.vocab_size, 8,
                                 data_loader.id_2_vec).cuda()
    else:
        print("invalid model type")
        exit(1)

    if (args.test_only):
        test(myModel, data_loader, args)
    else:
        train(myModel, data_loader, args)
Пример #2
0
def main(objects, **kwargs):
    nets = [
        model.Net(objects).cuda(),
        model.Baseline(objects).cuda(),
    ]
    loader = get_loader(objects, **kwargs)
    plins = run(nets, loader, 1000, train=True)
    accs = run(nets, loader, 200, train=False)
    return {'plins': plins, 'accs': accs}
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('-l',
                        '--load_from',
                        type=str,
                        default='models/deblur.hdf5')
    parser.add_argument('-s',
                        '--save_to',
                        type=str,
                        default='models/deblur.tflite')
    parser.add_argument('-d', '--depth', type=int, default=4)
    parser.add_argument('-t', '--test', type=str, default='example/input.png')
    parser.add_argument('-o', '--optimize', type=str, default='')
    parser.add_argument('-q', '--quantize', type=str, default='')
    cfg = parser.parse_args()

    gpus = tf.config.experimental.list_physical_devices('GPU')
    if gpus:
        try:
            tf.config.experimental.set_memory_growth(gpus[0], True)
        except RuntimeError as e:
            print(e)

    # Prepare the test input
    test_input = imageio.imread(cfg.test)
    test_input = data.normalize(test_input)
    test_input = np.expand_dims(test_input, axis=0)
    _, h, w, c = test_input.shape

    representative = 'REDS/{}/train_blur'
    if h == 256 and w == 256:
        print('hi')
        representative = representative.format('train_crop')
    else:
        representative = representative.format('train')

    if cfg.depth == 4:
        net = model.Baseline(h, w)
    else:
        net_class = getattr(model, 'Small{}'.format(cfg.depth))
        net = net_class(h, w)

    net.build(input_shape=(None, h, w, c))
    net.load_weights(cfg.load_from)
    # Make a dummy prediction to get the input shape
    net.predict(test_input, batch_size=1)
    net.summary()

    # Convert to the TFLite model
    converter = lite.TFLiteConverter.from_keras_model(net)
    if cfg.optimize == 'weight':
        converter.optimizations = [tf.lite.Optimize.OPTIMIZE_FOR_LATENCY]
    elif 'integer' in cfg.quantize:
        converter.optimizations = [tf.lite.Optimize.DEFAULT]

        # Dataset for tuning
        def gen_rep():
            list_dir = os.listdir(representative)
            list_dir.sort()
            for d in tqdm.tqdm(list_dir, ncols=80):
                imgs = glob.glob(path.join(representative, d, '*.png'))
                img = random.choice(imgs)
                x = imageio.imread(img)
                hh, ww, _ = x.shape
                py = random.randrange(0, hh - h + 1)
                px = random.randrange(0, ww - w + 1)
                x = x[py:(py + h), px:(px + w)]
                x = np.expand_dims(x, axis=0)
                x = x.astype(np.float32)
                x = x - 128
                yield [x]

        converter.representative_dataset = gen_rep
        if 'full' in cfg.quantize:
            converter.target_spec.supported_ops = [
                tf.lite.OpsSet.TFLITE_BUILTINS_INT8
            ]
            converter.inference_input_type = tf.uint8
            converter.inference_output_type = tf.uint8
    '''
    elif 'fp16' in cfg.quantize:
        converter.optimizations = [tf.lite.Optimize.DEFAULT]
        converter.target_spec.supported_types = [tf.float16]
    '''
    lite_model = converter.convert()
    with open(cfg.save_to, 'wb') as f:
        f.write(lite_model)
Пример #4
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--patch_size', type=int, default=128)
    parser.add_argument('--keep_range', action='store_true')
    parser.add_argument('--batch_size', type=int, default=16)
    parser.add_argument('--depth', type=int, default=4)
    parser.add_argument('--epochs', type=int, default=20)
    parser.add_argument('--lr', type=float, default=1e-4)
    parser.add_argument('--lr_gamma', type=float, default=0.5)
    parser.add_argument('--milestones', nargs='+', default=[10, 15])
    parser.add_argument('--exp_name', type=str, default='baseline')
    parser.add_argument('--save_as', type=str, default='models/deblur.hdf5')
    cfg = parser.parse_args()

    # For checking the GPU usage
    #tf.debugging.set_log_device_placement(True)
    # For limiting the GPU usage
    gpus = tf.config.experimental.list_physical_devices('GPU')
    if gpus:
        try:
            tf.config.experimental.set_memory_growth(gpus[0], True)
        except RuntimeError as e:
            print(e)

    dataset_train = data.REDS(
        cfg.batch_size,
        patch_size=cfg.patch_size,
        train=True,
        keep_range=cfg.keep_range,
    )
    # We have 3,000 validation frames.
    # Note that each frame will be center-cropped for the validation.
    dataset_val = data.REDS(
        20,
        patch_size=cfg.patch_size,
        train=False,
        keep_range=cfg.keep_range,
    )

    if cfg.depth == 4:
        net = model.Baseline(cfg.patch_size, cfg.patch_size)
    else:
        net_class = getattr(model, 'Small{}'.format(cfg.depth))
        net = net_class(cfg.patch_size, cfg.patch_size)

    net.build(input_shape=(None, cfg.patch_size, cfg.patch_size, 3))
    kwargs = {'optimizer': 'adam', 'loss': 'mse'}
    if cfg.keep_range:
        net.compile(**kwargs, metrics=[metric.psnr_full])
    else:
        net.compile(**kwargs, metrics=[metric.psnr])
    net.summary()

    # Callback functions
    # For TensorBoard logging
    logging = callbacks.TensorBoard(
        log_dir=path.join('logs', cfg.exp_name),
        update_freq=100,
    )
    # For checkpointing
    os.makedirs(path.dirname(cfg.save_as), exist_ok=True)
    checkpointing = callbacks.ModelCheckpoint(
        cfg.save_as,
        verbose=1,
        save_weights_only=True,
    )
    def scheduler(epoch):
        idx = bisect.bisect_right(cfg.milestones, epoch)
        lr = cfg.lr * (cfg.lr_gamma**idx)
        return lr
    # For learning rate scheduling
    scheduling = callbacks.LearningRateScheduler(scheduler, verbose=1)

    net.fit_generator(
        dataset_train,
        epochs=cfg.epochs,
        callbacks=[logging, checkpointing, scheduling],
        validation_data=dataset_val,
        validation_freq=1,
        max_queue_size=16,
        workers=8,
        use_multiprocessing=True,
    )