Пример #1
0
def run(data, checkpoint_dir, eval_interval_secs, min_global_step, num_eval_examples):
	"""Runs evaluation in a loop.
	Args:
		data: a pointer to teh MNIST data
		checkpoint_dir: Directory containing model checkpoints.    
		eval_interval_secs: Interval between consecutive evaluations.
		min_global_step: Number of steps until the first evaluation.
		num_eval_examples: Number of examples to run the evaluation on.
	"""
	g = tf.Graph()

	with g.as_default():
		# Build the model for evaluation.
		model_config = configuration.ModelConfig()
		the_model = model.DAE(model_config)
		the_model.build()
		

		# Create the Saver to restore model Variables.
		saver = tf.train.Saver()

		g.finalize()

		# Run a new evaluation run every eval_interval_secs.
		while True:
			start = time.time()

			# Run evaluation.
			run_once(data, the_model, saver, checkpoint_dir, min_global_step, num_eval_examples)

			time_to_next_eval = start + eval_interval_secs - time.time()

			# Wait until the time to next evaluation elapses
			if time_to_next_eval > 0:
				time.sleep(time_to_next_eval)
Пример #2
0
def main(unused_argv):
    # Parse arguments.
    parser = argparse.ArgumentParser()
    args = parse_arguments(parser)

    # Model configuration.
    model_config = configuration.ModelConfig()
    training_config = configuration.TrainingConfig()

    # Create training directory.
    train_dir = args.train_dir
    if not tf.gfile.IsDirectory(train_dir):
        tf.logging.info("Creating training directory: %s", train_dir)
        tf.gfile.MakeDirs(train_dir)

    # Load MNIST data.
    mnist = input_data.read_data_sets('MNIST')

    # Build the TensorFlow graph.
    g = tf.Graph()

    with g.as_default():

        # Build the model.
        the_model = model.DAE(model_config)
        the_model.build()

        # Set up the learning rate.
        learning_rate = tf.constant(training_config.learning_rate)

        # Set up the training ops.
        train_op = tf.contrib.layers.optimize_loss(
            loss=the_model.total_loss,
            global_step=the_model.global_step,
            learning_rate=learning_rate,
            optimizer=training_config.optimizer)

        # Set up the Saver for saving and restoring model checkpoints.
        saver = tf.train.Saver()

        # Run training.

        print("Training")

        with tf.Session() as sess:

            print("Initializing parameters")
            sess.run(tf.global_variables_initializer())

            for step in range(1, args.number_of_steps):

                # Read batch.
                batch = mnist.train.next_batch(model_config.batch_size)[0]

                # Create a noisy version of the batch.
                noisy_batch = utils.add_noise(batch)

                # Prepare the dictionnary to feed the data to the graph.
                feed_dict = {
                    "images:0": batch,
                    "noisy_images:0": noisy_batch,
                    "phase_train:0": True
                }

                # Run training
                _, loss = sess.run([train_op, the_model.total_loss],
                                   feed_dict=feed_dict)

                if step % 50 == 0:
                    # Save checkpoint.
                    ave_path = saver.save(sess, train_dir + '/model.ckpt')

                    # Print Loss.
                    print("Step:", '%06d' % (step), "cost=",
                          "{:.9f}".format(loss))

            print('Finished training ...')

            print('Start testing ...')

            # load batch.
            testing_data = mnist.test.images
            # Plot the Original Image

            # Plot the Denoised Image

            # Create a noisy version of the data.
            corrupted_testing = utils.add_noise(testing_data)
            ori_plot = corrupted_testing[:10]
            count = 1
            for img in ori_plot:
                name = 'ori_img' + str(count)
                path = 'img/' + name
                count += 1
                plot_image(img.reshape((28, 28)), name, path)

# Prepare the dictionnary to feed the data to the graph.
            feed_dict = {
                "images:0": testing_data,
                "noisy_images:0": corrupted_testing,
                "phase_train:0": False
            }

            # Compute the loss
            reconstruc, loss = sess.run(
                [the_model.reconstructed_images, the_model.total_loss],
                feed_dict=feed_dict)
            ori_plot = reconstruc[:10]
            count = 1
            for img in ori_plot:
                name = 'de_img' + str(count)
                path = 'img/' + name
                count += 1
                plot_image(img.reshape((28, 28)), name, path)

            print(loss)

            print("Testing loss= ", loss)