Пример #1
0
def main():
    # Take in camera options
    args = sys.argv[1:]
    num_args = len(args)
    if num_args != 5:
        print("Did not input enough camera options")
        sys.exit()
    iso, cont, brt, sat, shutter = args

    #Set Raspistill image options
    dir = "/home/pi/"
    fileName = "img_" + datetime.now().strftime("%Y-%m-%d_%H-%M-%S") + ".jpg"
    cmd = "raspistill --ISO {} --contrast {} -- brightness {} --drc high -k --saturation {} --shutter {} -o ".format(
        iso, cont, brt, sat, shutter) + dir + fileName
    subprocess.call(cmd, shell=True)

    #Print model data
    model_wrapper = model.ModelWrapper()
    input_shape = model_wrapper.GetInputShape()
    output_shape = model_wrapper.GetOutputShape()
    preprocessing_metadata = helpers.get_image_preprocessing_metadata(
        model_wrapper)

    #Open image and run recognition
    my_file = Path(fileName)
    if not my_file.is_file():
        print("File Not Found")
        sys.exit()

    sample_image = cv2.imread(fileName)

    input_data = helpers.prepare_image_for_model(
        sample_image,
        input_shape.columns,
        input_shape.rows,
        preprocessing_metadata=preprocessing_metadata)

    input_data = model.FloatVector(input_data)

    predictions = model_wrapper.Predict(input_data)

    prediction_index = int(np.argmax(predictions))

    c_file = open("categories.txt", "r")
    list_of_categories = [(line.strip()).split() for line in c_file]
    c_file.close()

    #Print Results
    print("Model input shape: [{0.rows}, {0.columns}, {0.channels}]".format(
        input_shape))
    print("Model output shape: [{0.rows}, {0.columns}, {0.channels}]".format(
        output_shape))

    print("Category index: {}".format(prediction_index))
    print("Confidence: {}".format(predictions[prediction_index]))
    print("This object ({}) is a {} with confidence of {}".format(
        fileName, list_of_categories[prediction_index],
        predictions[prediction_index]))
Пример #2
0
def main():
    camera = cv2.VideoCapture(0)

    # request a specific resolution (sometimes the camera has very small default resolution)
    helpers.set_camera_resolution(camera, 1280, 720)

    with open("categories.txt", "r") as categories_file:
        categories = categories_file.read().splitlines()

    # Get the model wrapper in order to interact with the model
    model_wrapper = model.ModelWrapper()

    input_shape = model_wrapper.GetInputShape()
    output_shape = model_wrapper.GetOutputShape()

    # Get the model-specific preprocessing metadata
    preprocessing_metadata = helpers.get_image_preprocessing_metadata(model_wrapper)

    while (cv2.waitKey(1) & 0xFF) != 27:
        # Get the image from the camera
        original = get_image_from_camera(camera)

        # Prepare the image to pass to the model. This helper crops and resizes
        # the image maintaining proper aspect ratio and return the resultant
        # image instead of a numpy array.  Additionally, the helper will
        # reorder the image from BGR to RGB
        image, offset, scale = helpers.prepare_image_for_model(
            original, input_shape.columns, input_shape.rows, reorder_to_rgb=True,
            ravel=False, preprocessing_metadata=preprocessing_metadata)

        # Wrap the resulting numpy array in a FloatVector
        input_data = model.FloatVector(image)

        # Get the predictions by running the model. `predictions` is returned
        # as a flat array
        predictions = model_wrapper.Predict(input_data)

        # Reshape the output of the model into a tensor that matches the
        # expected shape
        predictions = np.reshape(
            predictions,
            (13, 13, 125))

        # Do some post-processing to extract the regions from the output of
        # the model
        regions = helpers.get_regions(
            predictions, categories, CONFIDENCE_THRESHOLD, ANCHOR_BOXES)

        # Get rid of any overlapping regions for the same object
        regions = helpers.non_max_suppression(
            regions, OVERLAP_THRESHOLD, categories)

        # Draw the regions onto the image
        scale = (scale[0] * image.shape[1], scale[1] * image.shape[0])
        helpers.draw_regions_on_image(original, regions, offset, scale)

        # Display the image
        cv2.imshow("Region detection", original)
Пример #3
0
def main():
    init_GPIO()
    init_camera()
    init_options()
    shoot_categories = set([504])
    with open("categories.txt", "r") as categories_file:
        categories = categories_file.read().splitlines()
    model_wrapper = model.ModelWrapper()
    input_shape = model_wrapper.GetInputShape()
    preprocessing_metadata = helpers.get_image_preprocessing_metadata(
        model_wrapper)
    while (cv2.waitKey(1) & 0xFF) == 0xFF:
        image = get_image_from_camera(camera)
        input_data = helpers.prepare_image_for_model(
            image,
            input_shape.columns,
            input_shape.rows,
            preprocessing_metadata=preprocessing_metadata)
        input_data = model.FloatVector(input_data)
        predictions = model_wrapper.Predict(input_data)
        top_5 = helpers.get_top_n(predictions, 5)
        header_text = ", ".join([
            "({:.0%}) {}".format(element[1], categories[element[0]])
            for element in top_5
        ])
        helpers.draw_header(image, header_text)
        if top_5:
            print(header_text)
        release_shutter()
        for element in top_5:
            if verbose:
                print(element[0])
            if element[0] in shoot_categories:
                press_shutter()
                break
        cv2.imshow("BirdWatcher", image)
        rawCapture.truncate(0)
Пример #4
0
def main():
    camera = cv2.VideoCapture(0)
    with open("categories.txt", "r") as categories_file:
        categories = categories_file.read().splitlines()
    model_wrapper = model.ModelWrapper()
    input_shape = model_wrapper.GetInputShape()
    preprocessing_metadata = helpers.get_image_preprocessing_metadata(
        model_wrapper)
    while (cv2.waitKey(1) & 0xFF) == 0xFF:
        image = get_image_from_camera(camera)
        input_data = helpers.prepare_image_for_model(
            image,
            input_shape.columns,
            input_shape.rows,
            preprocessing_metadata=preprocessing_metadata)
        input_data = model.FloatVector(input_data)
        predictions = model_wrapper.Predict(input_data)
        top_5 = helpers.get_top_n(predictions, 5)
        header_text = ", ".join([
            "({:.0%}) {}".format(element[1], categories[element[0]])
            for element in top_5
        ])
        helpers.draw_header(image, header_text)
        cv2.imshow("ELL model", image)
Пример #5
0
def main():
    """Entry point for the script when called directly"""
    # Open the video camera. To use a different camera, change the camera
    # index.
    camera = cv2.VideoCapture(0)

    # Read the category names
    with open("dogs.txt", "r") as dogs_file,\
            open("cats.txt", "r") as cats_file:
        dogs = dogs_file.read().splitlines()
        cats = cats_file.read().splitlines()

    # Get the model wrapper in order to interact with the model
    model_wrapper = model.ModelWrapper()

    # Get the model's input dimensions. We'll use this information later to
    # resize images appropriately.
    input_shape = model_wrapper.GetInputShape()

    # Get the model-specific preprocessing metadata
    preprocessing_metadata = helpers.get_image_preprocessing_metadata(
        model_wrapper)

    while (cv2.waitKey(1) & 0xFF) == 0xFF:
        # Get an image from the camera. If you'd like to use a different image,
        # load the image from some other source.
        image = get_image_from_camera(camera)

        # Prepare the image to pass to the model. This helper:
        # - crops and resizes the image maintaining proper aspect ratio
        # - reorders the image channels if needed
        # - returns the data as a ravelled numpy array of floats so it can be
        # handed to the model
        input_data = helpers.prepare_image_for_model(
            image,
            input_shape.columns,
            input_shape.rows,
            preprocessing_metadata=preprocessing_metadata)

        # Wrap the resulting numpy array in a FloatVector
        input_data = model.FloatVector(input_data)

        # Get the predicted classes using the model's predict function on the
        # image input data. The predictions are returned as a numpy array with the
        # probability that the image # contains the class represented by that
        # index.
        predictions = model_wrapper.Predict(input_data)

        # Let's grab the value of the top prediction and its index, which
        # represents the top most confident match and the class or category it
        # belongs to.
        top_n = helpers.get_top_n(predictions, 1, threshold=0.05)

        # See whether the prediction is in one of our groups
        group = ""
        label = ""
        if top_n:
            top = top_n[0][0]
            if prediction_index_in_set(top, dogs):
                group = "Dog"
            elif prediction_index_in_set(top, cats):
                group = "Cat"

        header_text = ""
        if group:
            # A group was detected, so take action
            top = top_n[0]
            take_action(group)
            header_text = "({:.0%}) {}".format(top[1], group)

        helpers.draw_header(image, header_text)

        # Display the image using opencv
        cv2.imshow("Grouping", image)
Пример #6
0
#
#  Requires: Python 3.x
#
###############################################################################

import cv2
import numpy as np

# Import helper functions
import tutorial_helpers as helpers

# Load the wrapped model's Python module
import model

# Get the model wrapper in order to interact with the model
model_wrapper = model.ModelWrapper()

# Get the input and output shapes
input_shape = model_wrapper.GetInputShape()
output_shape = model_wrapper.GetOutputShape()

# Get the model-specific preprocessing metadata
preprocessing_metadata = helpers.get_image_preprocessing_metadata(
    model_wrapper)

print("Model input shape: [{0.rows}, {0.columns}, {0.channels}]".format(
    input_shape))
print("Model output shape: [{0.rows}, {0.columns}, {0.channels}]".format(
    output_shape))

# Read in the sample image