Пример #1
0
    def __init__(self, train_loader, test_loader, config, load_dir=None):

        self.train_loader = train_loader
        self.test_loader = test_loader
        self.sample_set = Sample_Set(config)
        self.config = config

        self.model_name = self.config['model']['name']
        self.model = model.StarGAN_emo_VC1(self.config, self.model_name)
        self.set_configuration()
        self.model = self.model

        if not load_dir == None:
            self.load_checkpoint(load_dir)
Пример #2
0
    np.random.seed(SEED)
    random.seed(SEED)

    # Use GPU
    USE_GPU = True

    if USE_GPU and torch.cuda.is_available():
        device = torch.device('cuda')
        torch.cuda.manual_seed_all(SEED)
        map_location='cuda'
    else:
        device = torch.device('cpu')
        map_location='cpu'

    # Load model
    model = model.StarGAN_emo_VC1(config, config['model']['name'])
    # model.load(args.checkpoint)
    model.load(checkpoint_dir, map_location= map_location)
    config = model.config
    model.to_device(device = device)
    model.set_eval_mode()

    # Make emotion targets (using config file)
    # s = solver.Solver(None, None, config, load_dir = None)
    # targets =
    num_emos = config['model']['num_classes']
    emo_labels = torch.Tensor(range(0,num_emos)).long()
    emo_targets = F.one_hot(emo_labels, num_classes = num_emos).float().to(device = device)
    print(f"Number of emotions = {num_emos}")

    if args.in_dir == 'sample':