def __init__(self, train_loader, test_loader, config, load_dir=None): self.train_loader = train_loader self.test_loader = test_loader self.sample_set = Sample_Set(config) self.config = config self.model_name = self.config['model']['name'] self.model = model.StarGAN_emo_VC1(self.config, self.model_name) self.set_configuration() self.model = self.model if not load_dir == None: self.load_checkpoint(load_dir)
np.random.seed(SEED) random.seed(SEED) # Use GPU USE_GPU = True if USE_GPU and torch.cuda.is_available(): device = torch.device('cuda') torch.cuda.manual_seed_all(SEED) map_location='cuda' else: device = torch.device('cpu') map_location='cpu' # Load model model = model.StarGAN_emo_VC1(config, config['model']['name']) # model.load(args.checkpoint) model.load(checkpoint_dir, map_location= map_location) config = model.config model.to_device(device = device) model.set_eval_mode() # Make emotion targets (using config file) # s = solver.Solver(None, None, config, load_dir = None) # targets = num_emos = config['model']['num_classes'] emo_labels = torch.Tensor(range(0,num_emos)).long() emo_targets = F.one_hot(emo_labels, num_classes = num_emos).float().to(device = device) print(f"Number of emotions = {num_emos}") if args.in_dir == 'sample':