Пример #1
0
def train():
  with tf.Graph().as_default():
    global_step = tf.contrib.framework.get_or_create_global_step()
    print ("Global step", global_step)
    images, labels = model.distorted_inputs()
    logits = model.inference(images)
    loss = model.loss(logits, labels)
    train_op = model.train(loss, global_step)
    class _LoggerHook(tf.train.SessionRunHook):
      def begin(self):
        self._step = -1
      def before_run(self, run_context):
        self._step += 1
        self._start_time = time.time()
        return tf.train.SessionRunArgs(loss)
      def after_run(self, run_context, run_values):
        duration = time.time() - self._start_time
        loss_value = run_values.results
        if self._step % 10 == 0:
          num_examples_per_step = FLAGS.batch_size
          examples_per_sec = num_examples_per_step /duration
          sec_per_batch = float(duration)
          format_str = ('%s: step %d, loss = %.2f (%.1f examples/sec; %.3f '
            'sec/batch)')
          print (format_str % (datetime.now(), self._step, loss_value,
                  examples_per_sec, sec_per_batch))
 
    with tf.train.MonitoredTrainingSession(
      checkpoint_dir = FLAGS.train_dir,
      hooks=[tf.train.StopAtStepHook(last_step=FLAGS.max_steps),
              tf.train.NanTensorHook(loss),
              _LoggerHook()],
      config=tf.ConfigProto(log_device_placement=FLAGS.log_device_placement)) as mon_sess:
      while not mon_sess.should_stop():
        mon_sess.run(train_op)
Пример #2
0
def tower_loss(scope):
    """Calculate the total loss on a single tower running the cnn model.
  Args:
    scope: unique prefix string identifying the cnn tower, e.g. 'tower_0'
  Returns:
     Tensor of shape [] containing the total loss for a batch of data
  """
    images, labels = model.distorted_inputs(args.m, train_chunk_name, args.bs,
                                            number_of_labels,
                                            NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN,
                                            args.d)
    labels['observed'] = 1 - labels['censored']
    # images, labels = calc_at_risk(images, labels, args.m)
    if args.m == 'image_genome':
        labels['genomics'] = tf.cast(labels['genomics'], tf.float32)

    logits = model.inference(images, labels, args.kp, args.m, args.bs)
    _, risk_diff = model.log_sigmoid_loss(logits, labels, args.bs)
    losses = tf.get_collection('losses', scope)
    total_loss = tf.add_n(losses, name='total_loss')
    for l in losses + [total_loss]:
        # Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training
        # session. This helps the clarity of presentation on tensorboard.
        loss_name = re.sub('%s_[0-9]*/' % model.TOWER_NAME, '', l.op.name)
        tf.summary.scalar(loss_name, l)

    # "labels" is a dictionary in which the keywords are among: 'idx' for
    # patients' indexes, 'survival', 'censored', 'observed', 'idh', 'codel',
    # 'copynum' for copy numbers, 'at_risk'
    return total_loss, logits, labels, images, risk_diff
Пример #3
0
def train():
  """Train datasets for a number of steps."""
  with tf.Graph().as_default():
    global_step = tf.Variable(0, trainable=False)

    # Get images and labels for model.
    images, labels = model.distorted_inputs()

    # Build a Graph that computes the logits predictions from the
    # inference model.
    logits = model.inference(images)

    # Calculate loss.
    loss = model.loss(logits, labels)

    # Build a Graph that trains the model with one batch of examples and
    # updates the model parameters.
    train_op = model.train(loss, global_step)

    # Create a saver.
    saver = tf.train.Saver(tf.global_variables())

    # Build the summary operation based on the TF collection of Summaries.
    summary_op = tf.summary.merge_all()

    # Build an initialization operation to run below.
    init = tf.global_variables_initializer()

    # Start running operations on the Graph.
    sess = tf.Session(config=tf.ConfigProto(log_device_placement=FLAGS.log_device_placement))# log_device_placement=True,该参数表示程序会将运行每一个操作的设备输出到屏幕
    sess.run(init)

    # Start the queue runners.
    tf.train.start_queue_runners(sess=sess)

    summary_writer = tf.summary.FileWriter(FLAGS.train_dir, graph_def=sess.graph_def)

    for step in range(FLAGS.max_steps):
      start_time = time.time()
      _, loss_value = sess.run([train_op, loss])
      duration = time.time() - start_time

      assert not np.isnan(loss_value), 'Model diverged with loss = NaN'

      if step % 10 == 0:
        num_examples_per_step = FLAGS.batch_size
        examples_per_sec = num_examples_per_step / duration
        sec_per_batch = float(duration)

        format_str = ('%s: step %d, loss = %.2f (%.1f examples/sec; %.3f sec/batch)')
        print (format_str % (datetime.now(), step, loss_value, examples_per_sec, sec_per_batch))

      if step % 100 == 0:
        summary_str = sess.run(summary_op)
        summary_writer.add_summary(summary_str, step)

      # Save the model checkpoint periodically.
      if step % 1000 == 0 or (step + 1) == FLAGS.max_steps:
        checkpoint_path = os.path.join(FLAGS.train_dir, 'model.ckpt')
        saver.save(sess, checkpoint_path, global_step=step)
Пример #4
0
def train():
    with tf.Graph().as_default():
        global_step = tf.Variable(0, trainable=False)

        images, labels = model.distorted_inputs()

        logits = model.inference(images)

        loss = model.loss(logits, labels)

        train_op = model.train(loss, global_step)

        saver = tf.train.Saver(tf.all_variables())

        summary_op = tf.merge_all_summaries()

        sess = tf.Session(config=tf.ConfigProto(
            log_device_placement=FLAGS.log_device_placement))

        ckpt = tf.train.get_checkpoint_state(FLAGS.train_dir)
        if FLAGS.resume_training and ckpt and ckpt.model_checkpoint_path:
            saver.restore(sess, ckpt.model_checkpoint_path)
            current_step = int(
                ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1])
        else:
            current_step = 0
            init = tf.initialize_all_variables()
            sess.run(init)

        tf.train.start_queue_runners(sess=sess)

        summary_writer = tf.train.SummaryWriter(SUMMARY_DIR,
                                                graph_def=sess.graph_def)

        for step in xrange(current_step, FLAGS.max_steps):
            start_time = time.time()
            _, loss_value = sess.run([train_op, loss])
            duration = time.time() - start_time

            assert not np.isnan(loss_value), 'Model diverged with loss = NaN'

            if step % 10 == 0:
                num_examples_per_step = FLAGS.batch_size
                examples_per_sec = num_examples_per_step / duration
                sec_per_batch = float(duration)

                format_str = ('%s: step %d, loss = %.2f'
                              '(%.1f examples/sec; %.3f'
                              'sec/batch)')
                print(format_str % (datetime.now(), step, loss_value,
                                    examples_per_sec, sec_per_batch))

            if step % 50 == 0:
                summary_str = sess.run(summary_op)
                summary_writer.add_summary(summary_str, step)

            if step % 100 == 0 or (step + 1) == FLAGS.max_steps:
                checkpoint_path = os.path.join(FLAGS.train_dir, 'model.ckpt')
                saver.save(sess, checkpoint_path, global_step=step)
def train():
    with tf.Graph().as_default():
        global_step = tf.Variable(0, trainable=False)

        images, labels = model.distorted_inputs()

        logits = model.inference(images)

        loss = model.loss(logits, labels)

        train_op = model.train(loss, global_step)

        saver = tf.train.Saver(tf.all_variables())

        summary_op = tf.merge_all_summaries()

        sess = tf.Session(config=tf.ConfigProto(
            log_device_placement=FLAGS.log_device_placement))

        ckpt = tf.train.get_checkpoint_state(FLAGS.train_dir)
        if FLAGS.resume_training and ckpt and ckpt.model_checkpoint_path:
            saver.restore(sess, ckpt.model_checkpoint_path)
            current_step = int(ckpt.model_checkpoint_path
                               .split('/')[-1].split('-')[-1])
        else:
            current_step = 0
            init = tf.initialize_all_variables()
            sess.run(init)

        tf.train.start_queue_runners(sess=sess)

        summary_writer = tf.train.SummaryWriter(SUMMARY_DIR,
                                                graph_def=sess.graph_def)

        for step in xrange(current_step, FLAGS.max_steps):
            start_time = time.time()
            _, loss_value = sess.run([train_op, loss])
            duration = time.time() - start_time

            assert not np.isnan(loss_value), 'Model diverged with loss = NaN'

            if step % 10 == 0:
                num_examples_per_step = FLAGS.batch_size
                examples_per_sec = num_examples_per_step / duration
                sec_per_batch = float(duration)

                format_str = ('%s: step %d, loss = %.2f'
                              '(%.1f examples/sec; %.3f'
                              'sec/batch)')
                print (format_str % (datetime.now(), step, loss_value,
                                     examples_per_sec, sec_per_batch))

            if step % 50 == 0:
                summary_str = sess.run(summary_op)
                summary_writer.add_summary(summary_str, step)

            if step % 100 == 0 or (step + 1) == FLAGS.max_steps:
                checkpoint_path = os.path.join(FLAGS.train_dir, 'model.ckpt')
                saver.save(sess, checkpoint_path, global_step=step)
Пример #6
0
def train():
    """Train CIFAR-10 for a number of steps."""
    with tf.Graph().as_default():
        global_step = tf.contrib.framework.get_or_create_global_step()

        # Get images and labels for CIFAR-10.
        # Force input pipeline to CPU:0 to avoid operations sometimes ending up on
        # GPU and resulting in a slow down.
        with tf.device('/cpu:0'):
            lefts, disps, confs = model.distorted_inputs()

        # Build a Graph that computes the logits predictions from the
        # inference model.
        predicted = model.inference(lefts, disps)

        # Calculate loss.
        loss = model.loss(predicted, confs)

        # Build a Graph that trains the model with one batch of examples and
        # updates the model parameters.
        train_op = model.train(loss, global_step)

        class _LoggerHook(tf.train.SessionRunHook):
            """Logs loss and runtime."""
            def begin(self):
                self._step = -1
                self._start_time = time.time()

            def before_run(self, run_context):
                self._step += 1
                return tf.train.SessionRunArgs(loss)  # Asks for loss value.

            def after_run(self, run_context, run_values):
                if self._step % FLAGS.log_frequency == 0:
                    current_time = time.time()
                    duration = current_time - self._start_time
                    self._start_time = current_time

                    loss_value = run_values.results
                    examples_per_sec = FLAGS.log_frequency * FLAGS.batch_size / duration
                    sec_per_batch = float(duration / FLAGS.log_frequency)

                    format_str = (
                        '%s: step %d, loss = %.2f (%.1f examples/sec; %.3f '
                        'sec/batch)')
                    print(format_str % (datetime.now(), self._step, loss_value,
                                        examples_per_sec, sec_per_batch))

        with tf.train.MonitoredTrainingSession(
                checkpoint_dir=FLAGS.train_dir,
                hooks=[
                    tf.train.StopAtStepHook(last_step=FLAGS.max_steps),
                    tf.train.NanTensorHook(loss),
                    _LoggerHook()
                ],
                config=tf.ConfigProto(log_device_placement=FLAGS.
                                      log_device_placement)) as mon_sess:
            while not mon_sess.should_stop():
                mon_sess.run(train_op)
Пример #7
0
def train():
    with tf.Graph().as_default():
        global_step = tf.Variable(0, trainable=False)

        images, labels = cifar10.distorted_inputs()

        logits = cifar10.inference(images, train=True)

        loss = cifar10.loss(logits, labels)

        train_op = cifar10.train(loss, global_step)

        saver = tf.train.Saver(tf.all_variables())

        summary_op = tf.merge_all_summaries()

        init = tf.initialize_all_variables()

        sess = tf.Session()

        sess.run(init)

        tf.train.start_queue_runners(sess=sess)

        summary_writer = tf.train.SummaryWriter(FLAGS.train_dir, sess.graph)

        ckpt = tf.train.get_checkpoint_state(FLAGS.train_dir)
        if ckpt and ckpt.model_checkpoint_path:
            saver.restore(sess, ckpt.model_checkpoint_path)
            print('Restoring from checkpoint')

        for step in xrange(FLAGS.max_steps):
            start_time = time.time()
            _, loss_value = sess.run([train_op, loss])
            duration = time.time() - start_time

            assert not np.isnan(loss_value), 'Model diverged with loss=NaN'

            if step % 100 == 0:
                num_examples_per_step = FLAGS.batch_size
                examples_per_sec = num_examples_per_step / duration
                sec_per_batch = float(duration)

                print('step %d loss = %f (%.1f examples/sec, %.3f sec/batch)' %
                      (step, loss_value, examples_per_sec, sec_per_batch))

                summary_str = sess.run(summary_op)
                summary_writer.add_summary(summary_str, step)

            if step % 1000 == 0 or (step + 1) == FLAGS.max_steps:
                checkpoint_path = os.path.join(FLAGS.train_dir, 'model.ckpt')
                saver.save(sess, checkpoint_path, global_step=step)
Пример #8
0
def tower_loss(scope):
    images, labels = model.distorted_inputs()

    logits = model.inference(images)

    _ = model.loss(logits, labels)

    losses = tf.get_collection('losses', scope)

    total_loss = tf.add_n(losses, name='total_loss')

    for l in losses + [total_loss]:
        loss_name = re.sub('%s_[0-9]*/' % model.TOWER_NAME, '', l.op.name)
        tf.summary.scalar(loss_name, l)

    return total_loss
Пример #9
0
def train(use_vgg=False):
    with tf.Graph().as_default():
        global_step = tf.train.get_or_create_global_step()
        images, labels = model.distorted_inputs()

        if use_vgg:
            logits = model_vgg16.inference(images, FLAGS.vgg_model)
            loss = model_vgg16.loss(logits, labels)
        else:
            logits = model.inference(images)
            loss = model.loss(logits, labels)

        train_op = tf.train.MomentumOptimizer(1e-3, momentum=0.9).minimize(
            loss, global_step=global_step)

        saver = tf.train.Saver(tf.all_variables())
        init = tf.initialize_all_variables()

        # Start running operations on the Graph.
        sess = tf.Session(config=tf.ConfigProto(
            log_device_placement=FLAGS.log_device_placement))
        sess.run(init)

        # Start queue runners
        tf.train.start_queue_runners(sess=sess)

        for step in xrange(FLAGS.max_steps):
            start_time = time.time()
            _, loss_value = sess.run([train_op, loss])
            duration = time.time() - start_time
            if step % 10 == 0:
                examples_per_sec = FLAGS.batch_size / duration
                sec_per_batch = float(duration)
                format_str = (
                    'step %d,loss = %.2f (%.1f examples/sec; %.3f sec/batch)')
                print(format_str %
                      (step, loss_value, examples_per_sec, sec_per_batch))
            if step % 1000 == 0 or (step + 1) == FLAGS.max_steps:
                if use_vgg:
                    checkpoint_path = os.path.join(FLAGS.train_dir,
                                                   'vgg_model.ckpt')
                else:
                    checkpoint_path = os.path.join(FLAGS.train_dir,
                                                   'model.ckpt')
                saver.save(sess, checkpoint_path, global_step=step)
Пример #10
0
def evaluate(use_vgg=False):
    with tf.Graph().as_default():

        eval_data = FLAGS.eval_data == 'test'
        images, labels = model.distorted_inputs()
        # Build a Graph that computes the logits predictions from the
        # inference model.
        logits = model.inference(images)
        # Calculate predictions.
        top_k_op = tf.nn.in_top_k(logits, labels, 1)
        # Restore the moving average version of the learned variables for eval.
        variable_averages = tf.train.ExponentialMovingAverage(
            model.MOVING_AVERAGE_DECAY)
        variables_to_restore = variable_averages.variables_to_restore()
        saver = tf.train.Saver(variables_to_restore)

        while True:
            eval_once(saver, top_k_op, use_vgg)
            if FLAGS.run_once:
                break
            time.sleep(FLAGS.eval_interval_secs)
Пример #11
0
def train():
  print('[Training Configuration]')
  print('\tTrain dir: %s' % FLAGS.train_dir)
  print('\tTraining max steps: %d' % FLAGS.max_steps)
  print('\tSteps per displaying info: %d' % FLAGS.display)
  print('\tSteps per testing: %d' % FLAGS.test_interval)
  print('\tSteps per saving checkpoints: %d' % FLAGS.checkpoint_interval)
  print('\tGPU memory fraction: %f' % FLAGS.gpu_fraction)

  """Train aPascal for a number of steps."""
  with tf.Graph().as_default():
    init_step = 0
    global_step = tf.Variable(0, trainable=False)

    # Get images and labels for aPascal.
    train_images, train_labels = model.distorted_inputs('train')
    test_images, test_labels = model.inputs('eval')

    # Build a Graph that computes the predictions from the inference model.
    images = tf.placeholder(tf.float32, [FLAGS.batch_size, model.IMAGE_WIDTH, model.IMAGE_WIDTH, 3])
    labels = tf.placeholder(tf.int32, [FLAGS.batch_size, model.NUM_ATTRS])
    probs = model.inference(images)

    # Calculate loss. (cross_entropy loss)
    loss, acc = model.loss_acc(probs, labels)
    tf.scalar_summary("accuracy", acc)

    # Build a Graph that trains the model with one batch of examples and
    # updates the model parameters.
    train_op, lr = model.train(loss, global_step)

    # Build the summary operation based on the TF collection of Summaries.
    train_summary_op = tf.merge_all_summaries()

    # Loss and accuracy summary used in test phase)
    loss_summary = tf.scalar_summary("test/loss", loss)
    acc_summary = tf.scalar_summary("test/accuracy", acc)
    test_summary_op = tf.merge_summary([loss_summary, acc_summary])

    # Build an initialization operation to run below.
    init = tf.initialize_all_variables()

    # Start running operations on the Graph.
    sess = tf.Session(config=tf.ConfigProto(
        gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=FLAGS.gpu_fraction),
        log_device_placement=FLAGS.log_device_placement))
    sess.run(init)

    # Create a saver.
    saver = tf.train.Saver(tf.all_variables(), max_to_keep=10000)
    ckpt = tf.train.get_checkpoint_state(FLAGS.train_dir)
    if ckpt and ckpt.model_checkpoint_path:
      print('\tRestore from %s' % ckpt.model_checkpoint_path)
      # Restores from checkpoint
      saver.restore(sess, ckpt.model_checkpoint_path)
      init_step = int(ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1])
    else:
      print('No checkpoint file found. Start from the scratch.')
      # if finetune, load variables of the final predication layers
      # from pretrained model
      if FLAGS.finetune:
        base_variables = tf.trainable_variables()[:-2*model.NUM_ATTRS]
        base_saver = tf.train.Saver(base_variables, max_to_keep=10000)
        ckpt = tf.train.get_checkpoint_state(FLAGS.pretrained_dir)
        print('Initial checkpoint: ' + ckpt.model_checkpoint_path)
        base_saver.restore(sess, ckpt.model_checkpoint_path)

    # Start the queue runners.
    tf.train.start_queue_runners(sess=sess)

    if not os.path.exists(FLAGS.train_dir):
        os.mkdir(FLAGS.train_dir)
    summary_writer = tf.train.SummaryWriter(FLAGS.train_dir)

    # Training!!
    for step in xrange(init_step, FLAGS.max_steps):
      start_time = time.time()
      try:
        train_images_val, train_labels_val = sess.run([train_images, train_labels])
        _, lr_value, loss_value, acc_value, train_summary_str = sess.run([train_op, lr, loss, acc, train_summary_op],
                                                                         feed_dict={images:train_images_val, labels:train_labels_val})
      except tf.python.framework.errors.InvalidArgumentError:
        embed()
      duration = time.time() - start_time

      assert not np.isnan(loss_value), 'Model diverged with loss = NaN'

      if step % FLAGS.display == 0:
        num_examples_per_step = FLAGS.batch_size
        examples_per_sec = num_examples_per_step / duration
        sec_per_batch = float(duration)

        format_str = ('%s: (Training) step %d, loss=%.4f, acc=%.4f, lr=%f (%.1f examples/sec; %.3f '
                      'sec/batch)')
        print (format_str % (datetime.now(), step, loss_value, acc_value, lr_value,
                             examples_per_sec, sec_per_batch))

        summary_writer.add_summary(train_summary_str, step)

      if step % FLAGS.test_interval == 0:
        test_images_val, test_labels_val = sess.run([test_images, test_labels])
        loss_value, acc_value, test_summary_str = sess.run([loss, acc, test_summary_op],
                                                           feed_dict={images:test_images_val, labels:test_labels_val})
        format_str = ('%s: (Test)     step %d, loss=%.4f, acc=%.4f')
        print (format_str % (datetime.now(), step, loss_value, acc_value))
        summary_writer.add_summary(test_summary_str, step)

      # Save the model checkpoint periodically.
      if step % FLAGS.checkpoint_interval == 0 or (step + 1) == FLAGS.max_steps:
        checkpoint_path = os.path.join(FLAGS.train_dir, 'model.ckpt')
        saver.save(sess, checkpoint_path, global_step=step)
Пример #12
0
def train():
    """Train FSRCNN for a number of steps."""
    os.environ["CUDA_VISIBLE_DEVICES"] = FLAGS.gpu
    with tf.Graph().as_default(), tf.device('/cpu:0'):
        # Create a variable to count the number of train() calls. This equals the
        # number of batches processed * FLAGS.num_gpus.
        global_step = tf.get_variable('global_step', [],
                                      initializer=tf.constant_initializer(0),
                                      trainable=False)

        # Create an optimizer that performs gradient descent.
        opt = tf.train.MomentumOptimizer(FLAGS.lr, 0.9)

        # Determine number of GPUs to use.
        num_gpus = len(FLAGS.gpu.split(','))

        # Get images and labels for FSRCNN.
        images, labels = model.distorted_inputs()
        batch_queue = tf.contrib.slim.prefetch_queue.prefetch_queue(
            [images, labels], capacity=2 * num_gpus)
        # Calculate the gradients for each model tower.
        tower_grads = []
        with tf.variable_scope(tf.get_variable_scope()):
            for i in xrange(num_gpus):
                with tf.device('/gpu:%d' % i):
                    with tf.name_scope('%s_%d' %
                                       (model.TOWER_NAME, i)) as scope:
                        # Dequeues one batch for the GPU
                        image_batch, label_batch = batch_queue.dequeue()
                        # Calculate the loss for one tower of the model. This function
                        # constructs the entire model but shares the variables across
                        # all towers.
                        loss = tower_loss(scope, image_batch, label_batch)

                        # Reuse variables for the next tower.
                        tf.get_variable_scope().reuse_variables()

                        # Retain the summaries from the final tower.
                        summaries = tf.get_collection(tf.GraphKeys.SUMMARIES,
                                                      scope)

                        # Calculate the gradients for the batch of data on this tower.
                        if FLAGS.quantize:
                            tensor_list = tf.get_collection('quantize', scope)
                            var_list = tf.trainable_variables()
                            grads = zip(tf.gradients(loss, tensor_list),
                                        var_list)
                        else:
                            grads = opt.compute_gradients(loss)

                        # Keep track of the gradients across all towers.
                        tower_grads.append(grads)

        # We must calculate the mean of each gradient. Note that this is the
        # synchronization point across all towers.
        grads = average_gradients(tower_grads)

        # Add a summary to track the learning rate.
        summaries.append(tf.summary.scalar('learning_rate', FLAGS.lr))

        # Apply the gradients to adjust the shared variables.
        apply_gradient_op = opt.apply_gradients(grads, global_step=global_step)

        # Add histograms for trainable variables.
        for var in tf.trainable_variables():
            summaries.append(tf.summary.histogram(var.op.name, var))

        # Group all updates to into a single train op.
        train_op = tf.group(apply_gradient_op)

        # Create a saver.
        saver = tf.train.Saver(tf.global_variables())

        # Build the summary operation from the last tower summaries.
        summary_op = tf.summary.merge(summaries)
        # summary_op = tf.summary.merge_all()

        # Build an initialization operation to run below.
        init = tf.global_variables_initializer()

        global_step = 0

        # Start running operations on the Graph. allow_soft_placement must be set to
        # True to build towers on GPU, as some of the ops do not have GPU
        # implementations.
        config = tf.ConfigProto(
            allow_soft_placement=True,
            log_device_placement=FLAGS.log_device_placement)
        config.gpu_options.per_process_gpu_memory_fraction = 0.8
        # config.gpu_options.allow_growth = True
        sess = tf.Session(config=config)
        sess.run(init)

        # Restore the model if reload is True.
        if FLAGS.reload:
            ckpt = tf.train.get_checkpoint_state(FLAGS.train_dir)
            if ckpt and ckpt.model_checkpoint_path:
                # Restores from checkpoint
                saver.restore(sess, ckpt.model_checkpoint_path)
                # Assuming model_checkpoint_path looks something like:
                #   /my-favorite-path/cifar10_train/model.ckpt-0,
                # extract global_step from it.
                global_step = ckpt.model_checkpoint_path.split('/')[-1].split(
                    '-')[-1]

        # Start the queue runners.
        tf.train.start_queue_runners(sess=sess)

        summary_writer = tf.summary.FileWriter(FLAGS.train_dir, sess.graph)

        for step in xrange(int(global_step), FLAGS.max_steps):
            start_time = time.time()
            _, loss_value = sess.run([train_op, loss])
            duration = time.time() - start_time

            assert not np.isnan(loss_value), 'Model diverged with loss = NaN'

            if step % 10 == 0:
                num_examples_per_step = FLAGS.batch_size * num_gpus
                examples_per_sec = num_examples_per_step / duration
                sec_per_batch = duration / num_gpus

                format_str = (
                    '%s: step %d, loss = %.4f (%.1f examples/sec; %.3f '
                    'sec/batch)')
                print(format_str % (datetime.now(), step, loss_value,
                                    examples_per_sec, sec_per_batch))

            if step % 100 == 0:
                summary_str = sess.run(summary_op)
                summary_writer.add_summary(summary_str, step)

            # Save the model checkpoint periodically.
            if step % 5000 == 0 or (step + 1) == FLAGS.max_steps:
                checkpoint_path = os.path.join(FLAGS.train_dir, 'model.ckpt')
                saver.save(sess, checkpoint_path, global_step=step)