def main(): start = datetime.datetime.now() if not os.path.exists(args.checkpoint_dir): os.makedirs(args.checkpoint_dir) if not os.path.exists(args.sample_dir): os.makedirs(args.sample_dir) if not os.path.exists(args.test_dir): os.makedirs(args.test_dir) if not os.path.exists(args.train_dir): os.makedirs(args.train_dir) tf.reset_default_graph() with tf.Session() as sess: model = graph2graph(sess, batch_size=args.batch_size, checkpoint_dir=args.checkpoint_dir, sample_dir=args.sample_dir, test_dir=args.test_dir, train_dir=args.train_dir, graph_size=args.graph_size, output_size=args.output_size, dataset=args.dataset) model.train(args) end = datetime.datetime.now() print(end - start)
def main(_): if not os.path.exists(args.checkpoint_dir): os.makedirs(args.checkpoint_dir) tf.reset_default_graph() with tf.Session() as sess: model = graph2graph(sess, Ds=args.Ds, No=args.No, Nr=args.Nr, Dr=args.Dr, Dx=args.Dx, De_o=args.De_o, De_r=args.De_r, Mini_batch=args.Mini_batch, checkpoint_dir=args.checkpoint_dir, epoch=args.epoch, Ds_inter=args.Ds_inter, Dr_inter=args.Dr_inter) if args.Type == 'train': model.train(args) if args.Type == 'test': start = datetime.datetime.now() model.test(args) end = datetime.datetime.now() print(end - start)
def main_auth(filename): #start = datetime.datetime.now() if not os.path.exists(args.checkpoint_dir): os.makedirs(args.checkpoint_dir) if not os.path.exists(args.sample_dir): os.makedirs(args.sample_dir) if not os.path.exists(args.test_dir): os.makedirs(args.test_dir) tf.reset_default_graph() with tf.Session() as sess: model = graph2graph(sess, batch_size=args.batch_size, checkpoint_dir=args.checkpoint_dir, sample_dir=args.sample_dir, test_dir=args.test_dir, train_dir=args.train_dir, graph_size=args.graph_size, output_size=args.output_size) #model.train(args) model.test_auth(args, filename)
def main(): start = datetime.datetime.now() if not os.path.exists(args.checkpoint_dir): os.makedirs(args.checkpoint_dir) if not os.path.exists(args.sample_dir): os.makedirs(args.sample_dir) if not os.path.exists(args.test_dir): os.makedirs(args.test_dir) #with tf.Session() as sess: #model = graph2graph(sess, batch_size=args.batch_size,checkpoint_dir=args.checkpoint_dir,sample_dir=args.sample_dir,test_dir=args.test_dir,train_dir=args.train_dir,graph_size=args.graph_size,output_size=args.output_size, dataset=args.dataset) v1 = np.load('data1s.npy') v4 = np.load('data2s.npy') predicted = np.zeros(shape=(30, 1225)) # full predicted dataset ground = np.zeros(shape=( 30, 1225 )) # structure for test data (unused for traınıng) ın each ıteratıon #loo = KFold(n_splits=5) #loo.get_n_splits(v1) #KFold(n_splits=6, random_state=None, shuffle=False) from sklearn.model_selection import KFold loo = KFold(n_splits=5) config = tf.ConfigProto() config.gpu_options.allow_growth = True session = tf.Session(config=config) option = None #TF_CONFIG = tf.ConfigProto(gpu_options=tf.GPUOptions(per_process_gpu_memory_fraction=0.5),allow_soft_placement=True) #sess = tf.Session(config=TF_CONFIG) pcr = [] mser = [] pv = [] predicteddata = [] wholepredicted = [] for train_index, test_index in loo.split(v1): tf.reset_default_graph() with tf.Session() as sess: model = graph2graph(sess, batch_size=args.batch_size, checkpoint_dir=args.checkpoint_dir, sample_dir=args.sample_dir, test_dir=args.test_dir, train_dir=args.train_dir, graph_size=args.graph_size, output_size=args.output_size, dataset=args.dataset) #epoch=args.epoch ##cuda.select_device(0) reg1, reg2 = v1[train_index], v1[ test_index] # reg1 ıs v1 traın dataset, reg2 v1 testdataset print(np.shape(reg1), 'reg1') print(np.shape(reg2), 'reg2') mal1, mal2 = v4[train_index], v4[ test_index] #mal1:v4 traın dataset,mal2 v4 testdataset(lıke y traın and test datatrain = np.zeros((reg1.shape[0], reg1.shape[1], reg1.shape[2], 2)) # forming a paır of traın samples print('now the test index is', test_index) for i in range(reg1.shape[0]): datatrain[i, :, :, 0] = reg1[i] ###reg1=train v1 datatrain[i, :, :, 1] = mal1[i] #mal1=train v2 (154, 35, 35, 2) print(np.shape(datatrain), 'thıs ıs traın data after loop') #model.train(args, datatrain) datatest = np.zeros((reg2.shape[0], reg2.shape[1], reg2.shape[2], 2)) # here we dont use any v4 data for i in range(reg2.shape[0]): datatest[i, :, :, 0] = reg2[i] datatest[i, :, :, 1] = reg2[ i] # forming a paır of test samples all from v1. print(predicted.shape) xx = model.test(args, datatest) predicted = xx.reshape( -1, 1225 ) # predicted[test_index,:] fill predicted with current test_index ground = np.reshape( mal2, (-1, 1225) ) # fill the previously defined predicted array with current test data sess.close() gc.collect() print(predicted.shape, ground.shape) corr, pvalue = pearsonr(predicted.ravel(), ground.ravel()) mse = mean_squared_error(predicted, ground) pcr.append(corr) pv.append(pvalue) mser.append(mse) predicteddata.append(predicted) wholepredicted.append(predicted) np.savetxt("./pred/pred" + str(test_index[0]) + ".txt", predicted, delimiter=',') np.savetxt("./gt/gt" + str(test_index[0]) + ".txt", ground, delimiter=',') print("pearson corr ", corr) print("pvalue ", pvalue) print("mean square error ", mse) end = datetime.datetime.now() print(start, 'thıs ıs the start tıme') print(end, 'thıs ıs the end tıme') print('total tıme ıs', start - end) gc.collect() tf.reset_default_graph() with open("./savedrestc/pcr rhv4 to v3last.txt", "w") as f: for s in pcr: f.write(str(s) + "\n") with open("./savedrestc/mser rhv4 to v3last.txt", "w") as f: for p in mser: f.write(str(p) + "\n") with open("./savedrestc/pv rhv4 to v3last.txt", "w") as f: for v in pv: f.write(str(v) + "\n") with open("./predwhole/predwhole.txt", "w") as f: for w in predicteddata: f.write(str(w) + "\n") #pv_mean=pv/5 pcr_mean = sum(pcr) / len(pcr) print("length of pv is ", len(pv)) print("length of pcr is ", len(pcr)) mse_mean = sum(mser) / len(mser) pv_mean = sum(pv) / len(pv) print(predicted.shape, ground.shape) corr, pvalue = pearsonr(predicted.ravel(), ground.ravel()) mse = mean_squared_error(predicted, ground) print("pearson corr ", corr) print("mean square error ", mse) print("Now mean results ") print("pearson corr_mean ", pcr_mean) print("mean square error_mean ", mse_mean) print("pv_mean is ", pv_mean) end = datetime.datetime.now() print(start, 'thıs ıs the start tıme') print(end, 'thıs ıs the end tıme') print('total tıme ıs', start - end) #np.savetxt("./predwhole/predicted3d.txt.txt",predicteddata) predicteddata2d = predicteddata[1:2] predicted2d = np.reshape(predicteddata2d, (30, 1225)) np.savetxt("./predwhole/2dpredicted.txt", predicted2d) np.save("./predwhole/wholepredicteddata.npy", wholepredicted)
def main(): start = datetime.datetime.now() if not os.path.exists(args.checkpoint_dir): os.makedirs(args.checkpoint_dir) if not os.path.exists(args.sample_dir): os.makedirs(args.sample_dir) if not os.path.exists(args.test_dir): os.makedirs(args.test_dir) v1=np.load('graph_view1.npy')#150, 35, 35 v4=np.load('graph_view2.npy') n_splits = 5 predicted = np.zeros(shape=(int(v1.shape[0]/n_splits),v1.shape[1]*v1.shape[2]))# full predicted dataset ground = np.zeros(shape=(int(v1.shape[0]/n_splits),v1.shape[1]*v1.shape[2])) # structure for test data predicted2 = np.zeros(shape=(int(v1.shape[0]/n_splits),v1.shape[1]*v1.shape[2])) ground2 = np.zeros(shape=(int(v1.shape[0]/n_splits),v1.shape[1]*v1.shape[2])) from sklearn.model_selection import KFold loo=KFold(n_splits=5) config = tf.ConfigProto() config.gpu_options.allow_growth = True session = tf.Session(config=config) option=None pcr=[] mser=[] pv=[] predicteddata=[] wholepredicted=[] pcr2=[] mser2=[] pv2=[] predicteddata2=[] wholepredicted2=[] for train_index, test_index in loo.split(v1): tf.reset_default_graph() with tf.Session() as sess: model = graph2graph(sess, batch_size=args.batch_size, checkpoint_dir=args.checkpoint_dir, sample_dir=args.sample_dir,test_dir=args.test_dir,train_dir=args.train_dir,graph_size=args.graph_size,output_size=args.output_size, dataset=args.dataset) reg1, reg2 = v1[train_index], v1[test_index]# reg1 ıs v1 traın dataset, reg2 v1 testdataset print(np.shape(reg1),'reg1') print(np.shape(reg2),'reg2') mal1, mal2 = v4[train_index], v4[test_index]#mal1:v4 traın dataset,mal2 v4 testdataset datatrain=np.zeros((reg1.shape[0],reg1.shape[1],reg1.shape[2],2)) # forming a paır of traın samples print('now the test index is', test_index) for i in range(reg1.shape[0]): datatrain[i,:,:,0]=reg1[i] ###reg1=train v1 reg ıs A and mal ıs B datatrain[i,:,:,1]=mal1[i] model.train(args, datatrain) # prediction in the first direction datatest=np.zeros((reg2.shape[0],reg2.shape[1],reg2.shape[2],2)) for i in range(reg2.shape[0]): datatest[i,:,:,0]=reg2[i] datatest[i,:,:,1]=reg2[i]# forming a paır of test samples, first direction prediction. print(predicted.shape) xx=model.test(args, datatest) predicted = xx.reshape(-1,v1.shape[1]*v1.shape[2]) ground = np.reshape(mal2, (-1,v1.shape[1]*v1.shape[2])) print(predicted.shape,ground.shape) corr,pvalue = pearsonr(predicted.ravel(),ground.ravel()) mse=mean_squared_error(predicted,ground) pcr.append(corr) pv.append(pvalue) mser.append(mse) predicteddata.append(predicted) wholepredicted.append(predicted) print("pearson corr ", corr) print("pvalue ", pvalue) print("mean square error ",mse) # prediction in opposite direction (second direction) print('###### begin B to A#####') datatest2=np.zeros((mal2.shape[0],mal2.shape[1],mal2.shape[2],2)) # for i in range(reg2.shape[0]): datatest2[i,:,:,0]=mal2[i] datatest2[i,:,:,1]=mal2[i]# forming a paır of test samples. print(predicted2.shape) xx=model.test2(args, datatest2) predicted2 = xx.reshape(-1,v1.shape[1]*v1.shape[2]) ground2 = np.reshape(reg2, (-1,v1.shape[1]*v1.shape[2])) sess.close() gc.collect() print(predicted2.shape,ground2.shape) corr2,pvalue2 = pearsonr(predicted2.ravel(),ground2.ravel()) mse2=mean_squared_error(predicted2,ground2) pcr2.append(corr2) pv2.append(pvalue2) mser2.append(mse2) predicteddata2.append(predicted2) wholepredicted2.append(predicted2) print("pearson corr ", corr2) print("pvalue ", pvalue2) print("mean square error ",mse2) print('###### end of B to A#######') end = datetime.datetime.now() print (start, 'thıs ıs the start tıme') print (end, 'thıs ıs the end tıme') gc.collect() tf.reset_default_graph() pcr_mean=sum(pcr) / len(pcr) print("length of pv is ", len(pv)) print("length of pcr is ", len(pcr)) mse_mean=sum(mser) / len(mser) pv_mean =sum(pv) / len(pv) print(predicted.shape,ground.shape) print("****Now mean results A to B**** ") print("pearson corr_mean ", pcr_mean) print("mean square error_mean ",mse_mean) print("pv_mean is ",pv_mean) end = datetime.datetime.now() print (start, 'thıs ıs the start tıme') print (end, 'thıs ıs the end tıme') np.save("wholepredicted_atob.npy", wholepredicted) print('################## beginning of second part B to A #############################################') pcr_mean2=sum(pcr2) / len(pcr2) mse_mean2=sum(mser2) / len(mser2) pv_mean2 =sum(pv2) / len(pv2) print("****Now mean results for B to A **** ") print("pearson corr_mean_B to A ", pcr_mean2) print("mean square error_mean_B to A ",mse_mean2) print("pv_mean is ",pv_mean2) np.save("wholepredicted_btoa.npy", wholepredicted2) print('################## end of second part B to A #############################################') end = datetime.datetime.now() print (start, 'thıs ıs the start tıme') print (end, 'thıs ıs the end tıme') print ('total tıme ıs', start-end)