def predict(): input_features = [x for x in request.form.values()] #print(input_features) bath = input_features[0] balcony = input_features[1] bhk = input_features[2] total_sqft_int = input_features[3] price_per_sqft = input_features[4] area_type = input_features[5] availability = input_features[6] location = input_features[7] prediction = model.predict_house_price(bath=bath, balcony=balcony, bhk=bhk, total_sqft_int=total_sqft_int, price_per_sqft=price_per_sqft, area_type=area_type, availability=availability, location=location) return render_template( 'index.html', pridicted_value="Predicted House Price is {} lakh".format(prediction))
def predict(): #take data from form and store in each feature input_features = [x for x in request.form.values()] BHK = input_features[0] Bathroom = input_features[1] rate_persqft = input_features[2] area_insqft = input_features[3] construction_status = input_features[4] Sale_type = input_features[5] location = input_features[6] # predict the price of house by calling model.py predicted_price = model.predict_house_price(BHK,Bathroom,rate_persqft,area_insqft,construction_status,Sale_type,location) # render the html page and show the output return render_template('index.html', prediction_text='Predicted Price of House is {} (Lakhs)'.format(predicted_price))
def predict(): #take data from form and store in each feature input_features = [x for x in request.form.values()] bath = input_features[0] balcony = input_features[1] total_sqft_int = input_features[2] bhk = input_features[3] price_per_sqft = input_features[4] area_type = input_features[5] availability = input_features[6] location = input_features[7] # predict the price of house by calling model.py predicted_price = model.predict_house_price(bath,balcony,total_sqft_int,bhk,price_per_sqft,area_type,availability,location) print(predicted_price) # render the html page and show the output return render_template('index.html', prediction_text='Predicted Price of Bangalore House is {}'.format(predicted_price))