Пример #1
0
def predict():
    input_features = [x for x in request.form.values()]
    #print(input_features)

    bath = input_features[0]
    balcony = input_features[1]
    bhk = input_features[2]
    total_sqft_int = input_features[3]
    price_per_sqft = input_features[4]
    area_type = input_features[5]
    availability = input_features[6]
    location = input_features[7]

    prediction = model.predict_house_price(bath=bath,
                                           balcony=balcony,
                                           bhk=bhk,
                                           total_sqft_int=total_sqft_int,
                                           price_per_sqft=price_per_sqft,
                                           area_type=area_type,
                                           availability=availability,
                                           location=location)

    return render_template(
        'index.html',
        pridicted_value="Predicted House Price is {} lakh".format(prediction))
Пример #2
0
def predict(): 
    #take data from form and store in each feature    
    input_features = [x for x in request.form.values()]
    BHK = input_features[0]
    Bathroom = input_features[1]
    rate_persqft = input_features[2]
    area_insqft = input_features[3]
    construction_status = input_features[4]
    Sale_type = input_features[5]
    location = input_features[6]
     
    # predict the price of house by calling model.py
    predicted_price = model.predict_house_price(BHK,Bathroom,rate_persqft,area_insqft,construction_status,Sale_type,location)       
    
 
    # render the html page and show the output
    return render_template('index.html', prediction_text='Predicted Price of House is {} (Lakhs)'.format(predicted_price))
Пример #3
0
def predict():
     
    #take data from form and store in each feature    
    input_features = [x for x in request.form.values()]
    bath = input_features[0]
    balcony = input_features[1]
    total_sqft_int = input_features[2]
    bhk = input_features[3]
    price_per_sqft = input_features[4]
    area_type = input_features[5]
    availability = input_features[6]
    location = input_features[7]
     
    # predict the price of house by calling model.py
    predicted_price = model.predict_house_price(bath,balcony,total_sqft_int,bhk,price_per_sqft,area_type,availability,location)       
    print(predicted_price)
 
    # render the html page and show the output
    return render_template('index.html', prediction_text='Predicted Price of Bangalore House is {}'.format(predicted_price))