def _recommend(cfg: dict): top_n = cfg['top_n'] cfg_model, cfg_dataset = cfg['model'], cfg['dataset'] cfg_results = cfg['results'] _, col_files = cfg_dataset['cols'] x_df = utils \ .read_csv(cfg_dataset['path'], usecols=cfg_dataset['cols']) \ .pipe(utils.to_list_of_strings, col=col_files) model_recommender = model.deserialize(cfg_model['path']) y_df = model.recommend(model_recommender, x_df, cfg_dataset['cols'], top_n=top_n) if cfg_results.get('save', True): utils.save_csv(cfg_results['out'], y_df)
def root(id=None): count = request.query.count if count != '': count = int(count) else: count = 10 if id is None: id = model_.id_to_article_id[0] matrix_id = model_.article_id_to_id[id] recommendations = model.recommend(model_, matrix_id, count) # for id, distance in recommendations: # print('{} => {}: {}'.format(model_.id_to_article_id[matrix_id], # model_.id_to_article_id[id], distance)) items = [model_.id_to_article_id[id] for id, _ in recommendations] return ','.join(items) + '\n'
def __init__(self): self.run = recommend() self.run.read_from_file('data/literature_data.txt') self.result = list()
async def song_recommend(song_id: int): #make recommendations #by default, no. of recs is 10 recs = recommend(item_id = song_id) return recs