Пример #1
0
 def __init__(self, fielddata):
     BaseModel.__init__(self)
     self.footholds = []
     self.footholds_count = 0
     self.background_img = pygame.image.load(
         get_file_path(fielddata['background_img'])).convert()
     self.tiles_img = pygame.image.load(
         get_file_path(fielddata['tiles_img'])).convert_alpha()
     for fh in fielddata['footholds']:
         tmp = {
             'pos': fh['pos'], 'width': fh['size'][0],
             'image': pygame.Surface(fh['size'], SRCALPHA)}
         x = 0
         for t in fh['tiles']:
             repeat, sub_pos, rand_tile = 1, (0, 0), False
             if 'repeat' in t:
                 repeat = t['repeat']
             if isinstance(t['sub_pos'], list):
                 rand_tile = True
             for _ in range(repeat):
                 sub_pos = t['sub_pos'][randindex(len(t['sub_pos']))] if\
                     rand_tile else t['sub_pos']
                 x = self._build_image(tmp['image'], x, sub_pos, t['size'])
         self.footholds.append(tmp)
         self.footholds_count += 1
Пример #2
0
def test_model():
    """Test the model"""
    # 1. Get Testing Options
    cfg = TestOptions()

    # 2. Load train and val Dataset
    test_loader = load_database(cfg)

    # 3. Create a Model
    model = BaseModel(cfg)

    # 4. Outer loop for one batch test sample
    loss = acc = 0.0
    for per_step, (images, labels,
                   images_names) in enumerate(test_loader.flow()):
        results = []
        model.test(images=images, labels=labels, mode='test')
        loss += model.loss
        acc += model.metric

        if cfg.opts.test_label == 'None':
            predict = model.out.argmax(1)
            for i in range(len(predict)):
                results.append([images_names[i], predict[i].item()])
                wrote_csv_file(model.result_path,
                               results,
                               mode='a',
                               show=False)
        print_test_info(cfg, [per_step, len(test_loader)], loss, acc)
Пример #3
0
 def __init__(self):
     BaseModel.__init__(self)
     # load save file
     self.level = 10
     self.critical_chance = 10
     self.damage = 10
     self.hit_num = 5
     self.critical_power = 50
Пример #4
0
    def __init__(self, env, handle, *args, **kwargs):
        BaseModel.__init__(self, env, handle)

        self.env = env
        self.handle = handle
        self.n_action = env.get_action_space(handle)
        self.view_size = env.get_view_space(handle)
        self.attack_base, self.view2attack = env.get_view2attack(handle)
Пример #5
0
    def __init__(self, env, handle, attack_handle, *args, **kwargs):
        BaseModel.__init__(self, env, handle)

        self.attack_channel = env.get_channel(attack_handle)
        self.attack_base, self.view2attack = env.get_view2attack(handle)

        print("attack_channel", self.attack_channel)
        print("view2attack", self.view2attack)
Пример #6
0
    def __init__(self, env, handle, away_handle, *args, **kwargs):
        BaseModel.__init__(self, env, handle)

        self.away_channel = env.get_channel(away_handle)
        self.attack_base, _ = env.get_view2attack(handle)
        self.move_back = 4

        print("attack base", self.attack_base, "away", self.away_channel)
Пример #7
0
    def __init__(self, env, handle, name, subclass_name):
        """init a model

        Parameters
        ----------
        env: magent.Environment
        handle: handle (ctypes.c_int32)
        name: str
        subclass_name: str
            name of subclass
        """
        BaseModel.__init__(self, env, handle)
        self.name = name
        self.subclass_name = subclass_name
Пример #8
0
def train_model():
    """Train the model"""
    # 1. Get Training Options
    cfg = TrainOptions()

    # 2. Load train and val Dataset
    train_loader, val_loader = load_database(cfg)

    # 3. Create a Model
    model = BaseModel(cfg)

    # 4. Training
    for per_epoch in range(model.start_epoch + 1, cfg.opts.epoch + 1):
        val_flag = False
        save_metrics = {"LOSS": 0.0, "ACC": 0.0}
        # inner loop for one batch
        for per_step, (images, labels, _) in enumerate(train_loader.flow()):
            model.train(images=images, labels=labels)
            save_metrics["LOSS"] += model.loss
            save_metrics["ACC"] += model.metric
            val_flag = print_train_info(
                val_flag, cfg,
                [model.start_epoch + 1, per_epoch, cfg.opts.epoch],
                [per_step + 1, len(train_loader)], model.lr, model.loss,
                model.metric)

        if cfg.opts.is_val:
            val_model(cfg, model, val_loader, val_flag, per_epoch)
        if per_epoch % cfg.opts.save_list == 0:
            model.save_model(per_epoch, [
                "train" + cfg.opts.save_metric,
                save_metrics[cfg.opts.save_metric] / len(train_loader)
            ])
        model.update_lr(per_epoch + 1)
Пример #9
0
def test(station, test_dataset, max_values, type):
    if type == 0:
        feature_dim = 6
    else:
        feature_dim = 3
    model = BaseModel(feature_dim, use_length, rnn_hid_dim)
    model.load_state_dict(torch.load('./files/params_' + station + '.pkl'))
    for start in range(0, len(test_dataset) - predict_time):
        x, t = test_dataset[start]
        acc = []
        PM25 = []
        PM10 = []
        O3 = []
        PM25_actual = []
        PM10_actual = []
        O3_actual = []
        for i in range(0, predict_time):
            _, t = test_dataset[start + i]
            x = Variable(x, volatile=True)
            x = x.unsqueeze(0)
            output = model(x)
            output = output.squeeze(0)
            output = output.data
            x = x.squeeze(0)
            x = np.vstack((x[1:], output[-1]))
            x = torch.from_numpy(x)
            out = output[-1].numpy()
            tar = t[-1].numpy()
            if (out[0] <= 0):
                out[0] = 0
            if (out[1] <= 0):
                out[1] = 0
            if (out[2] <= 0):
                out[2] = 0
            out = np.multiply(out, max_values)
            tar = np.multiply(tar, max_values)
            PM25.append(out[0])
            PM10.append(out[1])
            if type == 0:
                O3.append(out[2])
            else:
                O3.append(0)
            PM25_actual.append(tar[0])
            PM10_actual.append(tar[1])
            O3_actual.append(tar[2])
        acc.append(smape(PM25, PM25_actual))
        acc.append(smape(PM10, PM10_actual))
        acc.append(smape(O3, O3_actual))
        print(acc)
def read_price_file_ctp(ctp_file_path):
    fr = open(ctp_file_path)
    instrument_array = []
    market_array = []
    for line in fr.readlines():
        base_model = BaseModel()
        if len(line.strip()) == 0:
            continue
        for tempStr in line.split('|')[1].split(','):
            temp_array = tempStr.replace('\n', '').split(':', 1)
            setattr(base_model, temp_array[0].strip(), temp_array[1])

        if 'OnRspQryInstrument' in line:
            exchange_id = getattr(base_model, 'ExchangeID', '')
            product_id = getattr(base_model, 'ProductID', '')
            instrument_array.append(base_model)
        elif 'OnRspQryDepthMarketData' in line:
            market_array.append(base_model)

    field_list = [
        'VolumeMultiple', 'MaxMarketOrderVolume', 'MinMarketOrderVolume', 'MaxLimitOrderVolume',
        'MinLimitOrderVolume', 'LongMarginRatio', 'ShortMarginRatio'
    ]

    # platform_logger.debug('update_instrument_info, update record num: %d; fields: %s' %
    #                       (len(instrument_array), field_list))
    print ('update_instrument_info, update record num: %d; fields: %s') % (len(instrument_array), field_list)
    update_instrument_info(instrument_array)

    # platform_logger.debug('update market_info, update record num: %d' % (len(market_array)))
    print ('update market_info, update record num: %d') % len(market_array)
    update_market_info(market_array)  # 根据md行情数据更新prev_close
def index():
    return render_template('template.html',
                           weibo_data=BaseModel().select()[:10],
                           baidu_data=BaiduModal().select()[:10],
                           zhihu_data=ZhihuModal().select()[:10],
                           weixin_data=WeixinModal().select()[:10],
                           hotword=fenci())
Пример #12
0
def read_price_file_femas(femas_file_path):
    print 'Start read file:', femas_file_path
    fr = open(femas_file_path)
    option_array = []
    future_array = []
    instrument_cff_array = []
    market_array = []
    for line in fr.readlines():
        base_model = BaseModel()
        for tempStr in line.split('|')[1].split(','):
            temp_array = tempStr.replace('\n', '').split(':', 1)
            setattr(base_model, temp_array[0].strip(), temp_array[1])
        if 'OnRspQryInstrument' in line:
            product_id = getattr(base_model, 'ProductID', '')
            options_type = getattr(base_model, 'OptionsType', '')
            if (product_id == 'IC') or (product_id == 'IF') or (product_id == 'IH') or (product_id == 'TF') or \
                    (product_id == 'T'):
                future_array.append(base_model)
                instrument_cff_array.append(base_model)
            elif (options_type == '1') or (options_type == '2'):
                option_array.append(base_model)
                instrument_cff_array.append(option_array)
        elif 'OnRtnDepthMarketData' in line:
            market_array.append(base_model)

    update_instrument_cff(future_array)
    update_market_data(market_array)
def read_price_file_ctp(ctp_file_path):
    fr = open(ctp_file_path)
    future_list = []
    option_list = []
    for line in fr.readlines():
        base_model = BaseModel()
        if len(line.strip()) == 0:
            continue
        for tempStr in line.split('|')[1].split(','):
            temp_array = tempStr.replace('\n', '').split(':', 1)
            setattr(base_model, temp_array[0].strip(), temp_array[1])

        if 'OnRspQryInstrument' in line:
            product_class = getattr(base_model, 'ProductClass', '')
            if product_class == '1':
                future_list.append(base_model)
            if product_class == '2':
                option_list.append(base_model)

    # platform_logger.info('pre_add_future, add record num: %d' % len(future_list))
    print('pre_add_future, add record num: %d') % len(future_list)
    pre_add_future(future_list)  # 新增期货

    # platform_logger.info('pre_add_option, add record num: %d' % len(option_list))
    print('pre_add_option, add record num: %d') % len(option_list)
    pre_add_option(option_list)  # 新增期权
Пример #14
0
def predict(station, test_data, max_values, type):
    if type == 0:
        feature_dim = 6
    else:
        feature_dim = 3
    model = BaseModel(feature_dim, use_length, rnn_hid_dim)
    model.load_state_dict(torch.load('./files/params_' + station + '.pkl'))
    x = test_data
    #x, t = x.unsqueeze(0), t.unsqueeze(0)
    PM25 = []
    PM10 = []
    O3 = []
    for i in range(0, predict_time):
        x = Variable(x, volatile=True)
        x = x.unsqueeze(0)
        output = model(x)
        output = output.squeeze(0)
        output = output.data
        x = x.squeeze(0)
        x = np.vstack((x[1:], output[-1]))
        x = torch.from_numpy(x)
        out = output[-1].numpy()
        out = np.multiply(out, max_values)
        if (out[0] <= 0):
            out[0] = 0
        if (out[1] <= 0):
            out[1] = 0
        if (out[2] <= 0):
            out[2] = 0
        PM25.append(out[0])
        PM10.append(out[1])
        if type == 0:
            O3.append(out[2])
        else:
            O3.append(0)
    output_dict = {}
    output_dict['station_id'] = station
    output_dict['PM2.5'] = PM25
    output_dict['PM10'] = PM10
    output_dict['O3'] = O3
    if type == 0:
        beijing_output.append(output_dict)
    else:
        london_output.append(output_dict)
Пример #15
0
class BaseModelAPI(ModelAPI):

    def _set_model(self):
        self.model = BaseModel(argv=self.argv,
                               emb=self.emb,
                               n_vocab=self.vocab_word.size(),
                               n_labels=self.vocab_label.size())
        self.model.compile(self._get_input_tensor_variables())

    def _get_input_tensor_variables(self):
        # x_w: 1D: batch, 2D: n_words, 3D: 5 + window; word id
        # x_p: 1D: batch, 2D: n_words; posit id
        # y: 1D: batch, 2D: n_words; label id
        if self.argv.mark_phi:
            return [T.itensor3('x_w'), T.imatrix('x_p'), T.imatrix('y')]
        return [T.itensor3('x_w'), T.imatrix('y')]

    def _format_inputs(self, sample):
        return sample.x
Пример #16
0
def main():
	from true_causal_model import TrueCausalModel
	from model import BaseModel
	logging.basicConfig(filename='logs/causalAgent.log', filemode='w', level=logging.INFO)
	model = BaseModel('configs/model_parameters.json')
	nature = TrueCausalModel(model)
	rounds = 100
	target_value = 1
	half_blind_agent = HalfBlindAgent(nature, model)
	half_blind_agent.training(rounds, target_value)
Пример #17
0
 def __init__(self):
     Group.__init__(self)
     BaseModel.__init__(self)
     # load image
     _money_image = pygame.image.load(
         get_file_path('img/item/money.png')).convert_alpha()
     _subsurface_data = [(25, 24), (25, 24), (33, 30), (32, 31)]
     _y = 0
     self.money_images = []
     for _sub_data in _subsurface_data:
         _tmp_list = [_money_image.subsurface(
             (i*_sub_data[0], _y), _sub_data) for i in range(4)]
         _y += _sub_data[1]
         self.money_images.append(_tmp_list)
     _item_rare_image = pygame.image.load(
         get_file_path('img/item/rare_42x44.png')).convert_alpha()
     self.item_rare_images = [_item_rare_image.subsurface(
         (i*ITEM_RARE_SIZE[0], 0), ITEM_RARE_SIZE) for i in range(6)]
     # load icons, but now only load one image
     self.item_icons = pygame.image.load(
         get_file_path('img/item/04000019.png')).convert_alpha()
Пример #18
0
def test_model():
    """Test the model"""
    # 1. Get Testing Options
    cfg = TestOptions()

    # 2. Load train and val Dataset
    test_loader = load_database(cfg)

    # 3. Create a Model
    model = BaseModel(cfg)

    # 4, Create multi class metrics
    metrics = MultiClassMetrics(cfg.class_name)

    # 5. Outer loop for one batch test sample
    for per_step, (images, labels, images_names) in enumerate(test_loader):
        results = []
        model.input(images=images, labels=labels)
        model.test()

        if cfg.opts.test_label != 'None':
            metrics.eval(labels,
                         model.out.cpu(),
                         indicators="ACC, F1, FPR",
                         step=len(test_loader))
        else:
            predict = model.out.cpu().argmax(1)
            for i in range(len(predict)):
                results.append([images_names[i], predict[i].item()])
                wrote_csv_file(model.result_path,
                               results,
                               mode='a',
                               show=False)
        print_test_info(cfg, [per_step, len(test_loader)], metrics.metrics)
Пример #19
0
def test_model(seed_everything, data_dir, feat_extractor, crop_size,
               hidden_size):

    dm = SemanticDataModule(data_dir,
                            imgs_per_item=5,
                            crop_size=crop_size,
                            seed=42,
                            batch_size=2,
                            num_workers=0)
    dm.prepare_data()

    model = BaseModel(feat_extractor, crop_size, hidden_size, lr=0.01)

    trainer = pl.Trainer(fast_dev_run=True)
    trainer.fit(model, dm)
Пример #20
0
def demo_test():
    feature_dim = 6
    model = BaseModel(feature_dim, use_length, rnn_hid_dim)
    model.load_state_dict(torch.load('params.pkl'))
    train_dataset, valid_dataset, max_values = make_train_valid_dataset(
        'bj_aq.npy', use_length)
    # sample
    x, t = valid_dataset[0]
    #x = Variable(x, volatile=True).cuda()
    #t = Variable(t, volatile=True).cuda()
    x = Variable(x, volatile=True)
    t = Variable(t, volatile=True)
    x, t = x.unsqueeze(0), t.unsqueeze(0)
    output = model(x)
    output = output.squeeze(0)
    output = output.data
    x, t = x.squeeze(0), t.squeeze(0)
    current = np.multiply(x, max_values)
    output = np.multiply(output, max_values)
    target = np.multiply(t, max_values)

    print(current)
    print(target)
    print(output)
Пример #21
0
def run_simulation(config_filename, graphfilename, n):
  model = BaseModel(config_filename)
  tcm = TrueCausalModel(model)
  tcm.model.save_pgm_as_img(graphfilename)
  intervention_vars = model.get_intervention_variables()
  target_value = 1
  target = {
      "variable": model.get_target_variable(),
      "value": target_value
  }
  local_data = dict()
  for i in range(n):
    idx_intervention_var = np.random.randint(len(intervention_vars))
    action = (intervention_vars[idx_intervention_var], np.random.randint(2))
    nature_response = tcm.action_simulator([action[0]], [action[1]])
    for k in nature_response:
      if not k in local_data:
        local_data[k] = []
      local_data[k].append(nature_response[k])

  df = pd.DataFrame.from_dict(local_data)
  model_from_data = generate_approx_model_from_graph(ebunch=model.get_ebunch(), nodes=model.nodes, df=df)
  for cpd in model_from_data.get_cpds():
    logging.info(cpd)
def read_position_file_ctp(ctp_file_path):
    print 'Start read file:' + ctp_file_path
    fr = open(ctp_file_path)
    order_array = []
    trade_array = []
    trading_account_array = []
    investor_position_array = []
    commission_rate_array = []
    for line in fr.readlines():
        if 'Account_ID' in line:
            account_id = line.replace('\n', '').split(':')[1]
        else:
            base_model = BaseModel()
            for tempStr in line.split('|')[1].split(','):
                temp_array = tempStr.replace('\n', '').split(':', 1)
                setattr(base_model, temp_array[0].strip(), temp_array[1].strip())
            if 'OnRspQryOrder' in line:
                order_array.append(base_model)
            elif 'OnRspQryTrade' in line:
                trade_array.append(base_model)
            elif 'OnRspQryTradingAccount' in line:
                trading_account_array.append(base_model)
            elif 'OnRspQryInvestorPosition' in line:
                investor_position_array.append(base_model)
            elif 'OnRspQryInstrumentCommissionRate' in line:
                commission_rate_array.append(base_model)

    print 'AccountID:', account_id
    # 删除该账号今日记录
    del_account_position_by_id(account_id)
    del_order_trader_by_id(account_id)

    commission_rate_list = __get_commission_rate_list(commission_rate_array)
    (order_list, order_dict) = __get_order_list(account_id, order_array)
    trade_list = __get__trade_list(account_id, trade_array, order_dict)

    (position_dict, position_db_list) = __build_account_position(account_id, investor_position_array)
    # position_db_list = __calculation_position(trade_list, position_dict)

    if len(trading_account_array) > 0:
        cny_position_db = __get_account_cny(account_id, trading_account_array)
        position_db_list.append(cny_position_db)

    update_db(commission_rate_list, order_list, trade_list, position_db_list)
    update_account_trade_restrictions(account_id)
Пример #23
0
def main():
    parser = argparse.ArgumentParser(
        description='Run experiments causal agents.')
    parser.add_argument("--config-file",
                        type=str,
                        default="configs/model_parameters.json",
                        help="Path to the configuration files.")
    parser.add_argument("--experiments",
                        type=int,
                        default=10,
                        help="# of experiments.")
    parser.add_argument("--rounds",
                        type=int,
                        default=20,
                        help="# of rounds per experiment.")
    parser.add_argument("--target-value",
                        type=int,
                        default=1,
                        help="Desired value for target variable.")
    parser.add_argument("--log-file",
                        type=str,
                        default="logs/experiments.log",
                        help="Path to the log files.")
    args = parser.parse_args()
    logs_path = args.log_file
    model_path = args.config_file
    rounds = args.rounds
    target_value = args.target_value
    n_experiments = args.experiments
    if logs_path:
        logging.basicConfig(filename=logs_path,
                            filemode='w',
                            level=logging.INFO)
    model = BaseModel(model_path)
    nature = TrueCausalModel(model)
    names = ["Qlearning", "HalfBlindAgent", "FullyInformedAgent", "Random"]
    agents = [QLearning, HalfBlindAgent, FullyInformedAgent, RandomAgent]
    measures = [None, None, None, None]
    for i in range(len(agents)):
        measures[i] = run_experiments(n_experiments, rounds, agents[i],\
            nature, model, names[i], target_value)
    vis_utils.plot_rewards_comparison(
        measures, rounds, names,
        "{}experiments_{}rounds".format(n_experiments, rounds))
Пример #24
0
def read_position_file_lts(lts_file_path):
    fr = codecs.open(lts_file_path, 'r', 'gbk')
    sf_instrument_array = []
    option_array = []
    stock_array = []
    structured_fund_array = []
    # 货币基金
    mmf_fund_array = []
    for line in fr.xreadlines():
        base_model = BaseModel()
        for tempStr in line.split('|')[1].split(','):
            temp_array = tempStr.replace('\n', '').split(':', 1)
            setattr(base_model, temp_array[0].strip(), temp_array[1])
        if 'OnRspQryInstrument' in line:
            product_id = getattr(base_model, 'ProductID', '')
            # productClass = getattr(baseModel, 'ProductClass', '')
            if (product_id == 'SHEOP') or (product_id == 'SHAOP'):
                option_array.append(base_model)
            elif (product_id == 'SZA') or (product_id == 'SHA') or (
                    product_id == 'HKA') or (product_id == 'CY'):
                stock_array.append(base_model)
            elif (product_id == 'SZOF') or (product_id == 'SHOF'):
                structured_fund_array.append(base_model)
            elif product_id == 'SHFUNDETF':
                mmf_fund_array.append(base_model)
        elif 'OnRspQrySFInstrument' in line:
            sf_instrument_array.append(base_model)

    # print structured_fund_array
    structured_fund_undl_ticker(sf_instrument_array)
    add_structured_fund(structured_fund_array)

    # platform_logger.info('add_option, update record num: %d' % len(option_array))
    print('add_option, update record num: %d') % len(option_array)
    add_option(option_array)  # 新增期权
    # print '**--**'

    # platform_logger.info('add_stock, update record num: %d' % len(stock_array))
    print('add_stock, update record num: %d') % len(stock_array)
    add_stock(stock_array)  # 更新股票停牌日期数据和新增股票

    # platform_logger.info('add_mmf_fund, update record num: %d' % len(mmf_fund_array))
    print('add_mmf_fund, update record num: %d') % len(mmf_fund_array)
    add_mmf_fund(mmf_fund_array)  # 新增货币基金
def read_position_file_lts(lts_file_path):
    fr = codecs.open(lts_file_path, 'r', 'gbk')
    sf_instrument_array = []
    of_instrument_array = []
    instrument_array = []
    market_array = []
    index_array = []
    for line in fr.xreadlines():
        base_model = BaseModel()
        for temp_str in line.split('|')[1].split(','):
            temp_array = temp_str.replace('\n', '').split(':', 1)
            setattr(base_model, temp_array[0].strip(), temp_array[1])
        if 'OnRspQrySFInstrument' in line:
            sf_instrument_array.append(base_model)
        if 'OnRspQryOFInstrument' in line:
            of_instrument_array.append(base_model)
        elif 'OnRspQryInstrument' in line:
            instrument_array.append(base_model)
        elif 'OnRtnDepthMarketData' in line:
            market_array.append(base_model)
        elif 'OnRtnL2Index' in line:
            index_array.append(base_model)

    print('update_fund, sf_instrument record num: %d')% len(sf_instrument_array)
    print('update_fund,of_instrument record num: %d') % len(of_instrument_array)
    # platform_logger.info('update_fund, update sf_instrument record num: %d' % len(sf_instrument_array))
    # platform_logger.info('update_fund, update of_instrument record num: %d' % len(of_instrument_array))
    update_fund(sf_instrument_array, of_instrument_array)  # 更新分级基金的prev_nav

    # platform_logger.info('update_instrument_base_info, update record num: %d' % len(instrument_array))
    print('update_instrument_base_info, update record num: %d')% len(instrument_array)
    update_instrument_base_info(instrument_array)

    # different time, different function
    # platform_logger.info('update_market, update record num: %d' % len(market_array))
    print('update_market, update record num: %d') % len(market_array)
    update_market(market_array)  # 根据md行情数据更新prev_close


    # platform_logger.info('update_market_index, update record num: %d' % len(index_array))
    print('update_market_index, update record num: %d')% len(index_array)
    update_market_index(index_array)  # 根据md的L2行情数据更新指数的prev_close
Пример #26
0
def read_position_file_hs(hs_file_path, add_flag):
    print 'Start read file:' + hs_file_path
    fr = open(hs_file_path)
    order_array = []
    trade_array = []
    trading_account_array = []
    investor_position_array = []
    for line in fr.readlines():
        if 'Account_ID' in line:
            account_id = line.replace('\n', '').split(':')[1]
        else:
            base_model = BaseModel()
            for tempStr in line.split('|')[1].split(','):
                temp_array = tempStr.replace('\n', '').split(':', 1)
                if len(temp_array) != 2:
                    continue
                setattr(base_model, temp_array[0].strip(),
                        temp_array[1].strip())
            if 'QryOrder' in line:
                order_array.append(base_model)
            elif 'QryTrade' in line:
                trade_array.append(base_model)
            elif 'ReqQryCash' in line:
                trading_account_array.append(base_model)
            elif 'QryPosition' in line:
                investor_position_array.append(base_model)

    print 'AccountID:', account_id

    # 删除该账号今日记录
    del_account_position_by_id(account_id)

    (order_list, order_dict) = __get_order_list(account_id, order_array)
    trade_list = __get__trade_list(account_id, trade_array, order_dict)

    (position_dict,
     position_db_list) = __build_account_position(account_id,
                                                  investor_position_array)

    cny_position_db = __get_account_cny(account_id, trading_account_array)
    position_db_list.append(cny_position_db)
    update_db(order_list, trade_list, position_db_list)
Пример #27
0
def create_baseline_model(task):
    if task in ['mnist', 'kmnist', 'fashion']:
        img_dim = 28
        nb_channels = 1
        out_dim = 10
        res_channels = 16
        nb_res_blocks = 5
        mlp_dim = 32
    elif task in ['cifar10']:
        img_dim = 32
        nb_channels = 3
        out_dim = 10
        res_channels = 32
        nb_res_blocks = 10
        mlp_dim = 32
    else:
        print(f"! Unknown task '{task}'!")
        exit()
    
    return BaseModel(img_dim, nb_channels, out_dim, res_channels, nb_res_blocks, mlp_dim)
Пример #28
0
    def __init__(self,
                 device,
                 mtype=0,
                 in_dim=1,
                 out_dim=31,
                 model_file=None,
                 tf_learning=None,
                 name_model=None):
        self.device = device[0]
        self.type = mtype
        self.num_gpu = len(device)
        pretrained = False if tf_learning == None else True

        if mtype == 0:
            self.model = BaseModel(in_dim,
                                   out_dim,
                                   name_model=name_model,
                                   pretrained=pretrained,
                                   tf_learning=tf_learning)
        elif mtype == 1:
            self.model = TwoInputBaseModel(in_dim, out_dim)
        elif mtype == 2:
            self.model = VaeModel(nm_ch=in_dim, dm_lat=out_dim)
        elif mtype == 3:
            self.model = ExtdModel(in_dim=in_dim,
                                   out_dim=out_dim,
                                   name_model=name_model,
                                   pretrained=pretrained,
                                   tf_learning=tf_learning)
        else:
            raise RuntimeError

        if model_file is not None:
            self.load_model(model_file)

        #if  len(device) > 1:
        #    print("Let's use", len(device), "GPUs!")
        #    self.model = nn.DataParallel(self.model, device_ids=device)
        self.model = nn.DataParallel(self.model, device_ids=device)

        self.model.to(self.device)
Пример #29
0
def generate_model_from_env(env, lights_off=False):
    aj_mat = env.aj
    aj_list, parents = aj_matrix_to_aj_list(aj_mat)
    nodes = list(aj_list.keys())
    ebunch = aj_list_to_ebunch(aj_list)
    if lights_off:
        cpdtables = generate_cpdtables_from_aj_list(parents, invert=True)
    else:
        cpdtables = generate_cpdtables_from_aj_list(parents)
    targets = sorted(parents.keys())
    interventions = ["cause_{}".format(i) for i in range(env.num + 1)]
    target_vals = env.goal
    data = dict()
    data["digraph"] = ebunch
    data["cpdtables"] = cpdtables
    data["target"] = targets
    data["nature_variables"] = []
    data["interventions"] = interventions
    data["target_vals"] = target_vals
    data["nodes"] = nodes
    return BaseModel(data=data)
Пример #30
0
def main(unused_argv):
    hparams = create_hparams(FLAGS)
    print(hparams)
    if hparams.mode == "train":
        _mode = tf.contrib.learn.ModeKeys.TRAIN
    elif hparams.mode == "eval":
        _mode = tf.contrib.learn.ModeKeys.EVAL
    elif hparams.mode == "infer":
        _mode = tf.contrib.learn.ModeKeys.INFER
    else:
        raise ("Unknown Mode!!!")

    model = BaseModel(hparams, mode=_mode)
    print("num_gpus = %d, batch size = %d" %
          (model.num_gpus, hparams.batch_size * model.num_gpus))
    config = make_config()
    if _mode == tf.contrib.learn.ModeKeys.TRAIN:
        train(model, config, hparams)
    if _mode == tf.contrib.learn.ModeKeys.EVAL:
        eval(model, config, hparams)
    if _mode == tf.contrib.learn.ModeKeys.INFER:
        infer(model, config, hparams)
def read_position_file_lts(lts_file_path):
    print 'Start read file:' + lts_file_path
    fr = open(lts_file_path)
    order_array = []
    trade_array = []
    trading_account_array = []
    investor_position_array = []

    for line in fr.readlines():
        if 'Account_ID' in line:
            account_id = line.replace('\n', '').split(':')[1]
        else:
            base_model = BaseModel()
            for tempStr in line.split('|')[1].split(','):
                temp_array = tempStr.replace('\n', '').split(':', 1)
                setattr(base_model, temp_array[0].strip(), temp_array[1])
            if 'OnRspQryOrder' in line:
                order_array.append(base_model)
            elif 'OnRspQryTrade' in line:
                trade_array.append(base_model)
            elif 'OnRspQryTradingAccount' in line:
                trading_account_array.append(base_model)
            elif 'OnRspQryInvestorPosition' in line:
                investor_position_array.append(base_model)

    print 'AccountID:', account_id
    account_info = get_account_info(account_id)
    # 删除该账号今日记录
    del_account_position_by_id(account_id)
    del_order_trader_by_id(account_id)

    save_order(account_id, order_array)
    save_trade(account_info, trade_array)

    save_account_cny(account_info, trading_account_array)
    save_account_position(account_info, investor_position_array)
Пример #32
0
    """
    # Model hyperparameters
    input_size = args.vocab_size
    output_size = 4  # num of classes
    embedding_dim = 100  # embedding dimension
    hidden_dim = 64  # hidden size of RNN
    num_layers = 1

    # Make Train Loader
    train_dataset = TextDataset(args.data_dir, 'train', args.vocab_size)
    args.pad_idx = train_dataset.sentences_vocab.wtoi['<PAD>']
    train_loader = make_data_loader(train_dataset,
                                    args.batch_size,
                                    args.batch_first,
                                    shuffle=True)

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    args.device = device
    print("device : ", device)

    # instantiate model
    model = BaseModel(input_size,
                      output_size,
                      embedding_dim,
                      hidden_dim,
                      num_layers,
                      batch_first=args.batch_first)
    model = model.to(device)

    # Training The Model
    train(args, train_loader, model)
Пример #33
0
 def rootKey(self, _id='root'):
     if not ndb.Key(BaseModel, _id).get():
         _root = BaseModel(id=_id)
         _root.put()
         return _root.key
     return ndb.Key(BaseModel, _id)
Пример #34
0
def get_data():
    weibo = BaseModel().select()[:10]
    baidu = BaiduModal().select()[:10]
    zhihu = ZhihuModal().select()[:10]
    weixin = WeixinModal().select()[:10]
    return "".join([x.get('title') for x in weibo + baidu + zhihu + weixin])
Пример #35
0
XE_loss = CrossEntropyLoss()

train_metrics = init_metrics()
test_metrics = init_metrics()

print('--- SETTINGS ---')
print('Number of sentiments to classify:', args.num_sentiments)
print('Learning rate:', INITIAL_LR)
print('Num of epochs per fold:', NUM_EPOCHS)
print('Use gaze features:', args.use_gaze)

print('\n> Starting 10-fold CV.')
for k, (train_loader, test_loader) in enumerate(dataset.split_cross_val(10)):
    # initialize model and optimizer every fold
    model = BaseModel(lstm_units,
                      dataset.max_sentence_length, args.num_sentiments,
                      initial_word_embedding.clone(), args.use_gaze)
    optimizer = SGD(model.parameters(),
                    lr=INITIAL_LR,
                    momentum=0.95,
                    nesterov=True)

    # optimizer_scheduler = lr_scheduler.StepLR(
    #     optimizer, step_size=halve_lr_every_passes, gamma=0.5)
    if USE_CUDA:
        model = model.cuda()

    for e in range(NUM_EPOCHS):
        train_loss, train_results = iterate(train_loader)

    # save the training metrics of last epoch
Пример #36
0
 def _set_model(self):
     self.model = BaseModel(argv=self.argv,
                            emb=self.emb,
                            n_vocab=self.vocab_word.size(),
                            n_labels=self.vocab_label.size())
     self.model.compile(self._get_input_tensor_variables())