Пример #1
0
    def __init__(self, backbone, num_classes, sync_bn=False):
        super(Decoder, self).__init__()
        if backbone == 'resnet' or backbone == 'drn':
            low_feature_size = 256
        elif backbone == 'xception':
            low_feature_size = 128
        elif backbone == 'mobilenet':
            low_feature_size = 24
        elif backbone == 'inception':
            low_feature_size = 192
        else:
            raise NotImplementedError

        self.conv1 = nn.Conv2d(low_feature_size, 48, 1, bias=False)
        self.bn1 = BatchNorm(48, sync_bn)
        self.relu = nn.ReLU()
        # here 304 = 256 + 48, is the sum size of low level feature and output feature
        self.last_conv = nn.Sequential(
            nn.Conv2d(304, 256, kernel_size=3, stride=1, padding=1,
                      bias=False), BatchNorm(256, sync_bn), nn.ReLU(),
            nn.Dropout(0.5),
            nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1,
                      bias=False), BatchNorm(256, sync_bn), nn.ReLU(),
            nn.Dropout(0.1),
            nn.Conv2d(256, num_classes, kernel_size=1, stride=1))

        initial_weight(self.modules())
Пример #2
0
 def __init__(self, inplanes, planes, stride=1, dilation=1, downsample=None, sync_bn=False):
     super(BasicBlock, self).__init__()
     self.conv1 = conv3x3(inplanes, planes, stride)
     self.bn1 = BatchNorm(planes, sync_bn)
     self.relu = nn.ReLU(inplace=True)
     self.conv2 = conv3x3(planes, planes, dilation=dilation, padding=dilation)
     self.bn2 = BatchNorm(planes, sync_bn)
     self.downsample = downsample
     self.stride = stride
Пример #3
0
 def __init__(self, inplanes, planes, stride=1, dilation=1, downsample=None, sync_bn=False):
     super(Bottleneck, self).__init__()
     self.conv1 = conv1x1(inplanes, planes)
     self.bn1 = BatchNorm(planes, sync_bn)
     self.conv2 = conv3x3(planes, planes, stride, dilation=dilation, padding=dilation)
     self.bn2 = BatchNorm(planes, sync_bn)
     self.conv3 = conv1x1(planes, planes * self.expansion)
     self.bn3 = BatchNorm(planes * self.expansion)
     self.relu = nn.ReLU(inplace=True)
     self.downsample = downsample
     self.stride = stride
Пример #4
0
    def __init__(self, backbone, output_scale, sync_bn=False):
        super(ASPP, self).__init__()
        if backbone == 'drn':
            inplanes = 512
        elif backbone == 'mobilenet':
            inplanes = 320
        else:
            inplanes = 2048
        if output_scale == 16:
            dilations = [1, 6, 12, 18]
        elif output_scale == 8:
            dilations = [1, 12, 24, 36]
        else:
            raise NotImplementedError

        self.layer1 = ASPPBlock(inplanes,
                                256,
                                1,
                                padding=0,
                                dilation=dilations[0],
                                sync_bn=sync_bn)
        self.layer2 = ASPPBlock(inplanes,
                                256,
                                3,
                                padding=dilations[1],
                                dilation=dilations[1],
                                sync_bn=sync_bn)
        self.layer3 = ASPPBlock(inplanes,
                                256,
                                3,
                                padding=dilations[2],
                                dilation=dilations[2],
                                sync_bn=sync_bn)
        self.layer4 = ASPPBlock(inplanes,
                                256,
                                3,
                                padding=dilations[3],
                                dilation=dilations[3],
                                sync_bn=sync_bn)

        self.global_avg_pool = nn.Sequential(
            nn.AdaptiveAvgPool2d((1, 1)),
            nn.Conv2d(inplanes, 256, 1, 1, bias=False),
            BatchNorm(256, sync_bn), nn.ReLU())
        self.conv1 = nn.Conv2d(256 * 5, 256, 1, bias=False)
        self.bn1 = BatchNorm(256, sync_bn)
        self.relu = nn.ReLU()
        self.dropout = nn.Dropout(0.5)

        initial_weight(self.modules())
Пример #5
0
    def __init__(self, block, layers, output_scale=16, sync_bn=False, zero_init_residual=False):
        super(ResNet, self).__init__()
        self.inplanes = 64
        if output_scale == 16:
            strides = [1, 2, 2, 1]
            dilations = [1, 1, 1, 2]
        elif output_scale == 8:
            strides = [1, 2, 1, 1]
            dilations = [1, 1, 2, 4]
        else:
            raise NotImplementedError

        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
                               bias=False)
        self.bn1 = BatchNorm(64, sync_bn)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, layers[0], stride=strides[0], dilation=dilations[0], sync_bn=sync_bn)
        self.layer2 = self._make_layer(block, 128, layers[1], stride=strides[1], dilation=dilations[1], sync_bn=sync_bn)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=strides[2], dilation=dilations[2], sync_bn=sync_bn)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=strides[3], dilation=dilations[3], sync_bn=sync_bn)

        initial_weight(self.modules())

        # Zero-initialize the last BN in each residual branch,
        # so that the residual branch starts with zeros, and each residual block behaves like an identity.
        # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
        if zero_init_residual:
            for m in self.modules():
                if isinstance(m, Bottleneck):
                    nn.init.constant_(m.bn3.weight, 0)
                elif isinstance(m, BasicBlock):
                    nn.init.constant_(m.bn2.weight, 0)
Пример #6
0
    def _make_layer(self, block, planes, blocks, stride=1, dilation=1, sync_bn=False):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                conv1x1(self.inplanes, planes * block.expansion, stride),
                BatchNorm(planes * block.expansion, sync_bn),
            )

        layers = []
        layers.append(block(self.inplanes, planes, stride, dilation, downsample, sync_bn))
        self.inplanes = planes * block.expansion
        for _ in range(1, blocks):
            layers.append(block(self.inplanes, planes, dilation=dilation, sync_bn=sync_bn))

        return nn.Sequential(*layers)
Пример #7
0
 def __init__(self,
              inplanes,
              planes,
              kernel,
              padding,
              dilation,
              sync_bn=False):
     super(ASPPBlock, self).__init__()
     self.atrous_conv = nn.Conv2d(inplanes,
                                  planes,
                                  kernel_size=kernel,
                                  stride=1,
                                  padding=padding,
                                  dilation=dilation,
                                  bias=False)
     self.bn = BatchNorm(planes, sync_bn)
     # what will happen if use LeakyReLU
     self.relu = nn.ReLU()
Пример #8
0
 def __init__(self, in_channels, out_channels, sync_bn, **kwargs):
     super(BasicConv2d, self).__init__()
     self.conv = nn.Conv2d(in_channels, out_channels, bias=False, **kwargs)
     self.bn = BatchNorm(out_channels, sync_bn)