Пример #1
0
            loss_.backward()
            optimizer.step()
            train_l_sum += loss_.cpu().item()
            train_acc_sum += (y_hat.argmax(dim=1) == y).sum().cpu().item()
            n += y.shape[0]
            batch_count += 1
        test_acc = evaluate_accuracy(test_iter, net)
        print('epoch %d, loss %.4f, train acc %.3f, test acc %.3f,\
                 time %.1f sec' %
              (epoch + 1, train_l_sum / batch_count, train_acc_sum / n,
               test_acc, time.time() - start))


lr, num_epochs = 0.01, 5
optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad,
                                    net.parameters()),
                             lr=lr)
loss = nn.CrossEntropyLoss()
train(train_iter, test_iter, net, loss, optimizer, device, num_epochs)


def predict_sentiment(net, vocab, sentence):
    """sentence是词语的列表"""
    device = list(net.parameters())[0].device
    sentence = torch.tensor([vocab.stoi[word] for word in sentence],
                            device=device)
    label = torch.argmax(net(sentence.view((1, -1))), dim=1)
    return 'positive' if label.item() == 1 else 'negative'


def main():
Пример #2
0
print("索引化后的训练数据:", len(train_features))
print("索引化后的测试数据:", len(test_features))
print("训练集标签:", len(labels))

from model import generator, BiRNN, train, evaluate_accuracy
from torch import nn, optim
import torch
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(np.array(train_features),
                                                    np.array(labels),
                                                    test_size=0.2)

x_train = torch.tensor(x_train, dtype=torch.long)
y_train = torch.tensor(y_train)
x_test = torch.tensor(x_test, dtype=torch.long)
y_test = torch.tensor(y_test)

test_features = torch.tensor(np.array(test_features), dtype=torch.long)
embeddings_matrix = torch.tensor(embeddings_matrix)

net = BiRNN(word_index, 100, 100, 2)
net.embedding.weight.data.copy_(embeddings_matrix)
net.embedding.weight.requires_grad = False
loss = nn.CrossEntropyLoss()
optimizer = optim.Adam(filter(lambda p: p.requires_grad, net.parameters()),
                       lr=0.0001)
num_epochs = 10
train_iter = generator(x_train, y_train, 10, train=True)
test_iter = generator(x_test, y_test, 10, train=False)

train(train_iter, test_iter, net, loss, optimizer, num_epochs)