def __init__(self, z_dim=8, c_dim=1, scale=10.0, net_size=32): self.cppn = CPPN(z_dim=z_dim, c_dim=c_dim, scale=scale, net_size=net_size) self.z = self.generate_z( ) # saves most recent z here, in case we find a nice image and want the z-vec
def main(): checkDirectory('./many_models/model_images/') checkDirectory('./many_models/models/') # Variables for different images x_dim = 1440 y_dim = 1080 color_channels = 1 # Edit these to make specific types of models zs = list(range(3, 4)) neurons = list(range(15, 20)) layers = list(range(3, 5)) tests = [0, 1, 2, 3, 4, 5] # the different types of networks scale = 24 for z_dim in zs: for neurons_per_layer in neurons: for number_of_layers in layers: for t in tests: # Make a new CPPN interpolations_per_image = 1 cppn = CPPN(x_dim, y_dim, z_dim, scale, neurons_per_layer, number_of_layers, color_channels, interpolations_per_image, test=t) cppn.neural_net(True) dict_key = makeKey(z_dim, neurons_per_layer, number_of_layers, t) # Save the model cppn.save_model(model_name=dict_key, model_dir='many_models/models', save_outfile=True) z = np.random.uniform(-1.0, 1.0, size=(z_dim)).astype(np.float32) # Save a test image filename = "./many_models/model_images/%s.png" % (dict_key) cppn.save_png(z, filename, save=True) cppn.close() print('num/l', number_of_layers, 'neur/l', neurons_per_layer, 'z', z_dim, 'all_tests completed')
def main(x_dim, y_dim, z_dim, scale, neurons_per_layer, number_of_layers, color_channels, number_of_stills, interpolations_per_image, file_name): print('Initializing CPPN...') cppn = CPPN(x_dim, y_dim, z_dim, scale, neurons_per_layer, number_of_layers, color_channels, interpolations_per_image) cppn.neural_net(True) print('Making latent(z) vectors') # Make a list of random latent vectors zs = [] # list of latent vectors for i in range(number_of_stills): zs.append(np.random.uniform(-1.0, 1.0, size=(z_dim)).astype(np.float32)) # Save to a video file print('Making Video!') cppn.save_mp4(zs, file_name) print('Done! The video is at %s' % file_name)
def main(model_name, function, outfiles=None, file_name=None): # Load a saved CPPN and set variables meta_data = getMetaData(model_name) (x_dim, y_dim, z_dim, scale, neurons_per_layer, number_of_layers, color_channels, test) = meta_data interpolations_per_image = 24 # Initialize CPPN with parameters ######################################### print('Initializing CPPN...') cppn = CPPN(x_dim, y_dim, z_dim, scale, neurons_per_layer, number_of_layers, color_channels, interpolations_per_image, test=test) cppn.neural_net(True) cppn.load_model(model_name=model_name) ########################################################################### if (function == 'make_random_video'): if (file_name != None): make_random_video(cppn, file_name, z_dim, number_of_stills=5) else: print('Please specify a file name. Visit the readme.') elif (function == 'make_gui_video'): if (outfiles != None and file_name != None): outfiles = outfiles.split(',') make_gui_video(cppn, outfiles, file_name) else: print( 'Please specify an outfile and a file name. Visit the readme.') else: print('Please enter a valid function. Visit the readme.')
def __init__(self, z_dim = 8, c_dim = 1, scale = 10.0, net_size = 32): self.cppn = CPPN(z_dim = z_dim, c_dim = c_dim, scale = scale, net_size = net_size) self.z = self.generate_z() # saves most recent z here, in case we find a nice image and want the z-vec
class Sampler(): def __init__(self, z_dim = 8, c_dim = 1, scale = 10.0, net_size = 32): self.cppn = CPPN(z_dim = z_dim, c_dim = c_dim, scale = scale, net_size = net_size) self.z = self.generate_z() # saves most recent z here, in case we find a nice image and want the z-vec def reinit(self): self.cppn.reinit() def generate_z(self): z = np.random.uniform(-1.0, 1.0, size=(1, self.cppn.z_dim)).astype(np.float32) return z def generate(self, z=None, x_dim=1080, y_dim=1060, scale = 10.0): if z is None: z = self.generate_z() else: z = np.reshape(z, (1, self.cppn.z_dim)) self.z = z return self.cppn.generate(z, x_dim, y_dim, scale)[0] def show_image(self, image_data): ''' image_data is a tensor, in [height width depth] image_data is NOT the PIL.Image class ''' plt.subplot(1, 1, 1) y_dim = image_data.shape[0] x_dim = image_data.shape[1] c_dim = self.cppn.c_dim if c_dim > 1: plt.imshow(image_data, interpolation='nearest') else: plt.imshow(image_data.reshape(y_dim, x_dim), cmap='Greys', interpolation='nearest') plt.axis('off') plt.show() def save_png(self, image_data, filename): img_data = np.array(1-image_data) y_dim = image_data.shape[0] x_dim = image_data.shape[1] c_dim = self.cppn.c_dim if c_dim > 1: img_data = np.array(img_data.reshape((y_dim, x_dim, c_dim))*255.0, dtype=np.uint8) else: img_data = np.array(img_data.reshape((y_dim, x_dim))*255.0, dtype=np.uint8) im = Image.fromarray(img_data) im.save(filename) def to_image(self, image_data): # convert to PIL.Image format from np array (0, 1) img_data = np.array(1-image_data) y_dim = image_data.shape[0] x_dim = image_data.shape[1] c_dim = self.cppn.c_dim if c_dim > 1: img_data = np.array(img_data.reshape((y_dim, x_dim, c_dim))*255.0, dtype=np.uint8) else: img_data = np.array(img_data.reshape((y_dim, x_dim))*255.0, dtype=np.uint8) im = Image.fromarray(img_data) return im def save_anim_gif(self, z1, z2, filename, n_frame = 10, duration1 = 0.5, \ duration2 = 1.0, duration = 0.1, x_dim = 512, y_dim = 512, scale = 10.0, reverse = True): ''' this saves an animated gif from two latent states z1 and z2 n_frame: number of states in between z1 and z2 morphing effect, exclusive of z1 and z2 duration1, duration2, control how long z1 and z2 are shown. duration controls frame speed, in seconds ''' delta_z = (z2-z1) / (n_frame+1) total_frames = n_frame + 2 images = [] for i in range(total_frames): z = z1 + delta_z*float(i) images.append(self.to_image(self.generate(z, x_dim, y_dim, scale))) print "processing image ", i durations = [duration1]+[duration]*n_frame+[duration2] if reverse == True: # go backwards in time back to the first state revImages = list(images) revImages.reverse() revImages = revImages[1:] images = images+revImages durations = durations + [duration]*n_frame + [duration1] print "writing gif file..." writeGif(filename, images, duration = durations)
class Sampler(): def __init__(self, z_dim=8, c_dim=1, scale=10.0, net_size=32): self.cppn = CPPN(z_dim=z_dim, c_dim=c_dim, scale=scale, net_size=net_size) self.z = self.generate_z( ) # saves most recent z here, in case we find a nice image and want the z-vec def reinit(self): self.cppn.reinit() def generate_z(self): z = np.random.uniform(-1.0, 1.0, size=(1, self.cppn.z_dim)).astype(np.float32) return z def generate(self, z=None, x_dim=1080, y_dim=1060, scale=10.0): if z is None: z = self.generate_z() else: z = np.reshape(z, (1, self.cppn.z_dim)) self.z = z return self.cppn.generate(z, x_dim, y_dim, scale)[0] def show_image(self, image_data): ''' image_data is a tensor, in [height width depth] image_data is NOT the PIL.Image class ''' plt.subplot(1, 1, 1) y_dim = image_data.shape[0] x_dim = image_data.shape[1] c_dim = self.cppn.c_dim if c_dim > 1: plt.imshow(image_data, interpolation='nearest') else: plt.imshow(image_data.reshape(y_dim, x_dim), cmap='Greys', interpolation='nearest') plt.axis('off') plt.show() def save_png(self, image_data, filename): img_data = np.array(1 - image_data) y_dim = image_data.shape[0] x_dim = image_data.shape[1] c_dim = self.cppn.c_dim if c_dim > 1: img_data = np.array(img_data.reshape( (y_dim, x_dim, c_dim)) * 255.0, dtype=np.uint8) else: img_data = np.array(img_data.reshape((y_dim, x_dim)) * 255.0, dtype=np.uint8) im = Image.fromarray(img_data) im.save(filename) def to_image(self, image_data): # convert to PIL.Image format from np array (0, 1) img_data = np.array(1 - image_data) y_dim = image_data.shape[0] x_dim = image_data.shape[1] c_dim = self.cppn.c_dim if c_dim > 1: img_data = np.array(img_data.reshape( (y_dim, x_dim, c_dim)) * 255.0, dtype=np.uint8) else: img_data = np.array(img_data.reshape((y_dim, x_dim)) * 255.0, dtype=np.uint8) im = Image.fromarray(img_data) return im def to_anim_images(self, z1, z2, n_frame = 10, duration1 = 0.5, \ duration2 = 1.0, duration = 0.1, x_dim = 512, y_dim = 512, scale = 10.0, reverse = True): ''' this saves an animated gif from two latent states z1 and z2 n_frame: number of states in between z1 and z2 morphing effect, exclusive of z1 and z2 duration1, duration2, control how long z1 and z2 are shown. duration controls frame speed, in seconds ''' delta_z = (z2 - z1) / (n_frame + 1) total_frames = n_frame + 2 images = [] for i in range(total_frames): z = z1 + delta_z * float(i) images.append(self.to_image(self.generate(z, x_dim, y_dim, scale))) print("processing image ", i) durations = [duration1] + [duration] * n_frame + [duration2] if reverse == True: # go backwards in time back to the first state revImages = list(images) revImages.reverse() revImages = revImages[1:] images = images + revImages durations = durations + [duration] * n_frame + [duration1] return images, durations
parser.add_argument('--frames', type=int, default=2, help='number of frames in an animation for the gif') opt = parser.parse_args() print(opt) mnist = MNIST() mnist_train = mnist.train_loader if opt.cuda: cuda_gpu = torch.device('cuda:0') cppn = CPPN(x_dim=opt.x_dim, y_dim=opt.y_dim, scale=opt.scale, cuda_device=cuda_gpu) cppn.cuda() cppn.load_state_dict(torch.load(opt.model)) else: cppn = CPPN(x_dim=opt.x_dim, y_dim=opt.y_dim, scale=opt.scale) cppn.load_state_dict(torch.load(opt.model, map_location='cpu')) cppn.eval() enc = [] lab = [] for idx, (im, label) in enumerate(mnist_train): with torch.no_grad(): if opt.cuda: im = im.cuda()
from model import CPPN, CPPNParameters if __name__ == "__main__": params = CPPNParameters() model = CPPN(params) #model.save_gif("test.gif", 50) model.save_image("test.png")
class Sampler(): def __init__(self, z_dim=8, c_dim=1, scale=10.0, net_size=32): self.cppn = CPPN(z_dim=z_dim, c_dim=c_dim, scale=scale, net_size=net_size) self.z = self.generate_z( ) # saves most recent z here, in case we find a nice image and want the z-vec def reinit(self): self.cppn.reinit() def generate_z(self): z = np.random.uniform(-1.0, 1.0, size=(1, self.cppn.z_dim)).astype(np.float32) return z def generate(self, z=None, x_dim=1080, y_dim=1060, scale=10.0): if z is None: z = self.generate_z() else: z = np.reshape(z, (1, self.cppn.z_dim)) self.z = z return self.cppn.generate(z, x_dim, y_dim, scale)[0] def show_image(self, image_data): ''' image_data is a tensor, in [height width depth] image_data is NOT the PIL.Image class ''' plt.subplot(1, 1, 1) y_dim = image_data.shape[0] x_dim = image_data.shape[1] c_dim = self.cppn.c_dim if c_dim > 1: plt.imshow(image_data, interpolation='nearest') else: plt.imshow(image_data.reshape(y_dim, x_dim), cmap='Greys', interpolation='nearest') plt.axis('off') plt.show() def save_png(self, image_data, filename): img_data = np.array(1 - image_data) y_dim = image_data.shape[0] x_dim = image_data.shape[1] c_dim = self.cppn.c_dim if c_dim > 1: img_data = np.array(img_data.reshape( (y_dim, x_dim, c_dim)) * 255.0, dtype=np.uint8) else: img_data = np.array(img_data.reshape((y_dim, x_dim)) * 255.0, dtype=np.uint8) im = Image.fromarray(img_data) im.save(filename) def to_image(self, image_data): # convert to PIL.Image format from np array (0, 1) img_data = np.array(1 - image_data) y_dim = image_data.shape[0] x_dim = image_data.shape[1] c_dim = self.cppn.c_dim if c_dim > 1: img_data = np.array(img_data.reshape( (y_dim, x_dim, c_dim)) * 255.0, dtype=np.uint8) else: img_data = np.array(img_data.reshape((y_dim, x_dim)) * 255.0, dtype=np.uint8) im = Image.fromarray(img_data) return im def save_anim_gif(self, z1, z2, filename, n_frame = 240, duration1 = 0.5, \ duration2 = 1.0, duration = 0.1, x_dim = 1920, y_dim = 1080, scale = 10.0, reverse = True): ''' this saves an animated gif from two latent states z1 and z2 n_frame: number of states in between z1 and z2 morphing effect, exclusive of z1 and z2 duration1, duration2, control how long z1 and z2 are shown. duration controls frame speed, in seconds ''' delta_z = (z2 - z1) / (n_frame + 1) total_frames = n_frame + 2 images = [] for i in range(total_frames): z = z1 + delta_z * float(i) images.append(self.to_image(self.generate(z, x_dim, y_dim, scale))) print "processing image ", i durations = [duration1] + [duration] * n_frame + [duration2] if reverse == True: # go backwards in time back to the first state revImages = list(images) revImages.reverse() revImages = revImages[1:] images = images + revImages durations = durations + [duration] * n_frame + [duration1] print "writing gif file..." writeGif(filename, images, duration=durations) def save_anim_mp4(self, filename, n_frame=120, x_dim=1920, y_dim=1080, scale=10.0, reverse=True): z1 = self.generate_z() z2 = self.generate_z() path_folder = 'output/%s' % filename if not os.path.exists(path_folder): print 'creating path: %s' % path_folder os.makedirs(path_folder) delta_z = (z2 - z1) / (n_frame + 1) total_frames = n_frame + 2 for i in range(total_frames): z = z1 + delta_z * float(i) img = self.to_image(self.generate(z, x_dim, y_dim, scale)) img.save('%s/%s-%04d.png' % (path_folder, filename, i)) print "processing image %d/%d" % (i, n_frame) os.system( 'ffmpeg -i %s/%s-%%04d.png -c:v libx264 -crf 0 -preset veryslow -framerate 30 %s/%s.mp4' % (path_folder, filename, path_folder, filename)) if (reverse): os.system( 'ffmpeg -i %s/%s.mp4 -filter_complex "[0:v]reverse,fifo[r];[0:v][r] concat=n=2:v=1 [v]" -map "[v]" %s/%s-looped.mp4' % (path_folder, filename, path_folder, filename)) def save_anim_mp4_2(self, filename, zs=[], n_frame=360, x_dim=1920, y_dim=1080, scale=10.0, count=0): path_folder = 'output/%s' % filename if not os.path.exists(path_folder): print 'creating path: %s' % path_folder os.makedirs(path_folder) if (count <= 0): zs.append(zs[0]) # make it a full loop, return to first frame! first_z = zs[0] formatted_zs = map((lambda x: "%.3f" % x[0, 0]), zs) print "%d vectors: %s" % (len(zs), ", ".join(formatted_zs)) print "%d images total" % (len(zs) * n_frame) print "---" if (len(zs) <= 1): z = zs[0] img = self.to_image(self.generate(z, x_dim, y_dim, scale)) img.save('%s/%s-%04d.png' % (path_folder, filename, count)) print ">> %d : %.3f" % (count, z[0, 0]) print "---" print "%d images rendered" % count print "---" os.system( 'ffmpeg -i %s/%s-%%04d.png -c:v libx264 -crf 0 -preset veryslow -framerate 30 %s/%s.mp4' % (path_folder, filename, path_folder, filename)) return z1 = zs.pop(0) z2 = zs[0] print ">> (%.3f to %.3f) step #%d" % (z1[0, 0], z2[0, 0], len(zs)) delta_z = (z2 - z1) / (n_frame + 1) total_frames = n_frame + 1 for i in range(total_frames): z = z1 + delta_z * float(i) image_number = i + count img = self.to_image(self.generate(z, x_dim, y_dim, scale)) img.save('%s/%s-%04d.png' % (path_folder, filename, image_number)) z_output = ", ".join(str(x) for x in z[0].tolist()) print ">> %d : %.3f" % (image_number, z[0, 0]) self.save_anim_mp4_2(filename, zs, n_frame, x_dim, y_dim, scale, image_number + 1) def save_anim_mp4_loop(self, filename, zs, n_frame=360, x_dim=1920, y_dim=1080, scale=10.0, count=0): path_folder = 'output/%s' % filename if not os.path.exists(path_folder): print 'creating path: %s' % path_folder os.makedirs(path_folder) if (isinstance(zs, (int, long))): zs = self.generate_zs(zs) if (count <= 0): formatted_zs = map((lambda x: "%.3f" % x[0, 0]), zs) print "%d vectors: %s" % (len(zs), ", ".join(formatted_zs)) print "%d images total" % (len(zs) * n_frame) print "---" zs.append(zs[0]) # make it a full loop, return to first frame! zs.append( zs[1]) # make it smoothly loop (knows next frame is coming) if (len(zs) <= 2): # z = zs[0] # img = self.to_image(self.generate(z, x_dim, y_dim, scale)) # img.save('%s/%s-%04d.png' % (path_folder, filename, count)) # print ">> %d : %.3f" % (count, z[0,0]) print "---" print "%d images rendered" % count print "---" os.system( 'ffmpeg -i %s/%s-%%04d.png -c:v libx264 -pix_fmt yuv420p -crf 0 -preset veryslow -framerate 30 %s/%s.mp4' % (path_folder, filename, path_folder, filename)) # os.system('ffmpeg -i %s/%s.mp4 -filter "minterpolate='mi_mode=mci:mc_mode=aobmc:vsbmc=1:fps=90" %s/%s-interpolated-90fps.mp4') # os.system('docker cp %s/%s.mp4 boring_hamilton:/tmp/%s-docker.mp4') # os.system('docker run ') return z1 = zs.pop(0) z2 = zs[0] z3 = zs[1] print ">> (%.3f to %.3f) with %d steps left" % (z1[0, 0], z2[0, 0], len(zs) - 2) total_frames = n_frame + 1 for i in range(total_frames): percent_complete = float(i) / total_frames p = (math.asin(percent_complete * 2 - 1) + math.pi / 2) / math.pi delta_z1 = (z2 - z1) / (n_frame + 1) delta_z2 = (z3 - z2) / (n_frame + 1) delta_z = (p * delta_z2) + ((1 - p) * delta_z1) z = z1 + delta_z1 * float(i) image_number = i + count img = self.to_image(self.generate(z, x_dim, y_dim, scale)) img.save('%s/%s-%04d.png' % (path_folder, filename, image_number)) z_output = ", ".join(str(x) for x in z[0].tolist()) print ">> #%d \tz = %.3f \t%.1f%% \t%.4f delta \t%0.4f" % ( image_number, z[0, 0], percent_complete * 100, delta_z[0, 0], p) self.save_anim_mp4_loop(filename, zs, n_frame, x_dim, y_dim, scale, image_number + 1) def generate_zs(self, num): return map(lambda x: self.generate_z(), range(num))
input_vecs[:, len(z) + 2] = torch.Tensor(r).view(-1) return input_vecs def __getitem__(self, idx): return self.input_vecs[idx] def __len__(self): return self.img_size**2 if __name__ == "__main__": print("Device used:", device) z = torch.rand(z_dim) * scale cppn = CPPN(z_dim=z_dim, model_size=model_size).to(device) dataset = PixelDataSet(img_size, z) dataloader = DataLoader(dataset, batch_size=batch_size) image = torch.zeros(img_size**2) with torch.no_grad(): for i, batch in tqdm(enumerate(dataloader)): out = cppn(batch.to(device)) del batch image[i * batch_size:(i + 1) * batch_size] = out.view(-1) image = image.numpy() image = image.reshape(img_size, img_size)
def __init__(self, x_dim=1280, y_dim=720, z_dim=5, scale=16, neurons_per_layer=6, number_of_layers=8, color_channels=1, number_of_stills=5, interpolations_per_image=24, file_name='./p.png', model_name=None, outfile=None, model_dir=None, master=None): if (model_name == None or outfile == None or model_dir == None): print('Supply a model name and outfile!') exit(0) checkpoint_path = os.path.join(model_dir, model_name) outfile_name = checkpoint_path + 'meta_data' with open(outfile_name, 'rb') as fp: # 'outfile' can be renamed data = pickle.load(fp) x_dim = data[0] y_dim = data[1] z_dim = data[2] scale = data[3] neurons_per_layer = data[4] number_of_layers = data[5] color_channels = data[6] test = data[7] self.cppn = CPPN(x_dim, y_dim, z_dim, scale, neurons_per_layer, number_of_layers, color_channels, interpolations_per_image, test=test) self.cppn.neural_net(True) self.cppn.load_model(model_name=model_name, model_dir=model_dir) self.outfile = outfile self.z_vector = [0] * self.cppn.z_dim # parameters that you want to send through the Frame class. Frame.__init__(self, master) #reference to the master widget, which is the tk window self.master = master self.varHolders = [] self.saved_data = [] self.scaler = DoubleVar() self.save_image_name = 'image_name.png' #with that, we want to then run init_window, which doesn't yet exist self.init_window()
class Window(Frame): # Define settings upon initialization. Here you can specify def __init__(self, x_dim=1280, y_dim=720, z_dim=5, scale=16, neurons_per_layer=6, number_of_layers=8, color_channels=1, number_of_stills=5, interpolations_per_image=24, file_name='./p.png', model_name=None, outfile=None, model_dir=None, master=None): if (model_name == None or outfile == None or model_dir == None): print('Supply a model name and outfile!') exit(0) checkpoint_path = os.path.join(model_dir, model_name) outfile_name = checkpoint_path + 'meta_data' with open(outfile_name, 'rb') as fp: # 'outfile' can be renamed data = pickle.load(fp) x_dim = data[0] y_dim = data[1] z_dim = data[2] scale = data[3] neurons_per_layer = data[4] number_of_layers = data[5] color_channels = data[6] test = data[7] self.cppn = CPPN(x_dim, y_dim, z_dim, scale, neurons_per_layer, number_of_layers, color_channels, interpolations_per_image, test=test) self.cppn.neural_net(True) self.cppn.load_model(model_name=model_name, model_dir=model_dir) self.outfile = outfile self.z_vector = [0] * self.cppn.z_dim # parameters that you want to send through the Frame class. Frame.__init__(self, master) #reference to the master widget, which is the tk window self.master = master self.varHolders = [] self.saved_data = [] self.scaler = DoubleVar() self.save_image_name = 'image_name.png' #with that, we want to then run init_window, which doesn't yet exist self.init_window() #Creation of init_window def init_window(self): # changing the title of our master widget self.master.title("GUI") # allowing the widget to take the full space of the root window self.pack(fill=BOTH, expand=1) for i in range(self.cppn.z_dim): m = DoubleVar() w = Scale(self.master, from_=-2, to=2, variable=m, resolution=.01, command=self.updateValue, orient=HORIZONTAL) w.pack(side=LEFT) self.varHolders.append(m) w = Scale(self.master, from_=1, to=48, variable=self.scaler, resolution=.1, command=self.updateValue, orient=HORIZONTAL) w.pack(side=LEFT) # creating a button instance saveDataButton = Button(self.master, text="save data", command=self.saveData) saveDataButton.pack() pickleButton = Button(self.master, text="pickle data", command=self.pickleData) pickleButton.pack() def pickleData(self): print('Data pickled!') with open(self.outfile, 'wb') as f: # can change 'outfile' pickle.dump(self.saved_data, f) def saveData(self): print('saved ', len(self.saved_data)) zs = [] for value in self.varHolders: zs.append(value.get()) zs.append(self.scaler.get()) self.saved_data.append(zs) def updateValue(self, event): for index, value in enumerate(self.varHolders): self.z_vector[index] = value.get() z = np.array(self.z_vector) self.cppn.scale = self.scaler.get() # if save set to false, just sets cppn.curImage to image self.cppn.save_png(z, self.save_image_name, save=False) self.showImg() def showImg(self): load = self.cppn.curImage resized = load.resize((800, 600), Image.ANTIALIAS) render = ImageTk.PhotoImage(load) # labels can be text or images img = Label(self, image=render) img.image = render img.place(x=0, y=0)
default=4, help='number of cpu threads to use during\ batch generation') opt = parser.parse_args() print(opt) mnist = MNIST() train_mnist = mnist.train_loader test = mnist.test_loader if opt.cuda: cuda_gpu = torch.device('cuda:0') model = CPPN(cuda_device=cuda_gpu) model.cuda() else: model = CPPN() le = 0 ld = 0 lg = 0 indices_train = np.arange(60000) model.train() for epoch in range(opt.n_epochs): print("STARTING EPOCH {}".format(epoch)) for idx, (im, _) in enumerate(train_mnist): model.optimizer_discriminator.zero_grad()