Пример #1
0
def train(args, train_dataloader, valid_dataloader):
    torch.manual_seed(87)
    torch.cuda.manual_seed(87)

    autoencoder = cc(CVAE())

    criterion = torch.nn.MSELoss()
    opt = torch.optim.Adam(autoencoder.parameters(), lr=args.lr)

    best_loss = 1e100
    for epoch in range(args.epoch):
        print(f' Epoch {epoch}')

        loss = _run_train(autoencoder, criterion, opt, train_dataloader)
        print('\t [Info] Avg training loss:{:.5f}'.format(
            loss / len(train_dataloader.dataset)))

        loss = _run_eval(autoencoder, criterion, valid_dataloader)
        print('\t [Info] Avg valid loss:{:.5f}'.format(
            loss / len(valid_dataloader.dataset)))

        if True or loss < best_loss:
            best_loss = loss
            save_path = "{}/epoch_{}_loss_{:.4f}".format(
                args.save_path, epoch, loss / len(valid_dataloader.dataset))
            torch.save({'state_dict': autoencoder.state_dict()},
                       f"{save_path}_autoencoder_.pt")
            print(f'\t [Info] save weights at {save_path}')

        for param_group in opt.param_groups:
            param_group['lr'] = param_group['lr'] / 1

        print('-----------------------------------------------')
Пример #2
0
def main(args):
    # Check if the output folder is exist
    if not os.path.exists(args.folder):
        os.mkdir(args.folder)

    # Load model
    model = CVAE().cuda() if torch.cuda.is_available() else CVAE()
    model.load_state_dict(torch.load(os.path.join(args.folder, 'cvae.pth')))

    # Generate
    sample = torch.randn(args.num, 20)
    label = torch.from_numpy(np.asarray([args.digits] * args.num))
    sample = Variable(
        sample).cuda() if torch.cuda.is_available() else Variable(sample)
    sample = model.decode(sample, label).cpu()
    save_image(sample.view(args.num, 1, 28, 28).data,
               os.path.join(args.folder, 'generate.png'),
               nrow=10)
Пример #3
0
    def __init__(self, run_id=1, output_path="", env_path_root=""):
        super().__init__()
        self.cvae = CVAE(run_id=run_id)
        self.device = torch.device('cuda' if CUDA_AVAILABLE else 'cpu')
        self.output_path = output_path
        self.env_path_root = env_path_root

        if self.output_path is not None:
            if os.path.exists(self.output_path):
                shutil.rmtree(self.output_path)
            os.mkdir(self.output_path)
Пример #4
0
def main(args):
    # Check if the output folder is exist
    if not os.path.exists(args.folder):
        os.mkdir(args.folder)

    # Load data
    torch.manual_seed(args.seed)
    kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {}
    train_loader = torch.utils.data.DataLoader(datasets.MNIST(
        './data', train=True, download=True, transform=transforms.ToTensor()),
                                               batch_size=args.batch_size,
                                               shuffle=True,
                                               **kwargs)

    # Load model
    model = CVAE().cuda() if torch.cuda.is_available() else CVAE()
    optimizer = optim.Adam(model.parameters(), lr=1e-3)

    # Train and generate sample every epoch
    loss_list = []
    for epoch in range(1, args.epochs + 1):
        model.train()
        _loss = train(epoch, model, train_loader, optimizer)
        loss_list.append(_loss)
        model.eval()
        sample = torch.randn(100, 20)
        label = torch.from_numpy(np.asarray(list(range(10)) * 10))
        sample = Variable(
            sample).cuda() if torch.cuda.is_available() else Variable(sample)
        sample = model.decode(sample, label).cpu()
        save_image(sample.view(100, 1, 28, 28).data,
                   os.path.join(args.folder, 'sample_' + str(epoch) + '.png'),
                   nrow=10)
    plt.plot(range(len(loss_list)), loss_list, '-o')
    plt.savefig(os.path.join(args.folder, 'cvae_loss_curve.png'))
    torch.save(model.state_dict(), os.path.join(args.folder, 'cvae.pth'))
Пример #5
0
def main(argv):
    manager = DataManager(flags.image_dir)
    #manager.load()
    sess = tf.Session()

    model = CVAE(gamma=flags.gamma,
                 capacity_limit=flags.capacity_limit,
                 capacity_change_duration=flags.capacity_change_duration,
                 learning_rate=flags.learning_rate)

    sess.run(tf.global_variables_initializer())

    saver = load_checkpoints(sess)

    if flags.training:
        print("Training")
        # Train
        train(sess, model, manager, saver)
        # train(sess, model, imcrop, saver)
    else:
        print("jejeje")
Пример #6
0
train = pd.read_csv("dataset/VAE_Train+.csv")
test = pd.read_csv("dataset/VAE_Test+.csv")
trainx, trainy = np.array(
    train[train.columns[train.columns != "class"]]), np.array(
        pd.get_dummies(train["class"]))
testx, testy = np.array(
    test[train.columns[train.columns != "class"]]), np.array(
        pd.get_dummies(test["class"]))
batch_size = 512
max_epoch = 100
train_N = len(train)
test_N = len(test)
gpu = False
device = "cuda" if gpu else "cpu"

model = CVAE()
if gpu:
    model = model.cuda()
opt = optim.Adadelta(model.parameters(), lr=1e-3)


def Loss_function(x_hat, x, mu, logsimga):
    reconstraction_loss = F.binary_cross_entropy(x_hat, x, size_average=False)
    KL_div = -0.5 * th.sum(1 + logsimga - mu.pow(2) - logsimga.exp())

    return reconstraction_loss + KL_div


def create_batch(x, y):
    a = list(range(len(x)))
    np.random.shuffle(a)
Пример #7
0
    _, c_pairs = readLangs("test_c", "./data/test_c.txt")

    total_bleu_score = 0.0
    for pair, c_pair in zip(pairs, c_pairs):
        print('>', pair[0])
        print('=', pair[1])
        output_words = evaluate(model, c_pair, pair[0])
        output_sentence = ''.join(output_words)
        print('<', output_sentence)
        print('')
        total_bleu_score += bleu_score(pair[1], output_sentence)
        _bleu_score = total_bleu_score / len(pairs)
    print(f"Bleu Score: {_bleu_score}")
    return _bleu_score


device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

tense2index = {'sp': 0, 'tp': 1, 'pg': 2, 'p': 3}

latent_size = 32
hidden_size = 256

input_lang = torch.load("./lang_class.pth")

checkpoint = torch.load("./checkpoint/0.7902374299152759_61208.pth")
model = CVAE(28, hidden_size, latent_size, 28).to(device)
model.load_state_dict(checkpoint['state_dict'])

evaluateByTestData(model)
Пример #8
0
def main(args):
    # Create model directory
    if not os.path.exists(args.model_path):
        os.makedirs(args.model_path)

    # Load vocabulary wrapper
    with open(args.vocab_path, 'rb') as f:
        vocab = pickle.load(f)

    pad_idx = vocab.word2idx['<pad>']
    sos_idx = vocab.word2idx['<start>']
    eos_idx = vocab.word2idx['<end>']
    unk_idx = vocab.word2idx['<unk>']

    # Build data loader
    train_data_loader, valid_data_loader = get_loader(
        args.train_image_dir,
        args.val_image_dir,
        args.train_caption_path,
        args.val_caption_path,
        vocab,
        args.batch_size,
        shuffle=True,
        num_workers=args.num_workers)

    def kl_anneal_function(anneal_function, step, k, x0):
        if anneal_function == 'logistic':
            # return float(1 / (1 + np.exp(-k * (step - x0))))
            return float(expit(k * (step - x0)))
        elif anneal_function == 'linear':
            return min(1, step / x0)

    nll = torch.nn.NLLLoss(ignore_index=pad_idx)

    def loss_fn(logp, target, length, mean, logv, anneal_function, step, k,
                x0):
        # cut-off unnecessary padding from target, and flatten
        target = target[:, :torch.max(length).data[0]].contiguous().view(-1)
        logp = logp.view(-1, logp.size(2))

        # Negative Log Likelihood
        nll_loss = nll(logp, target)

        # KL Divergence
        KL_loss = -0.5 * torch.sum(1 + logv - mean.pow(2) - logv.exp())
        KL_weight = kl_anneal_function(anneal_function, step, k, x0)

        return nll_loss, KL_loss, KL_weight

    # Build the models
    model = CVAE(vocab_size=len(vocab),
                 embedding_size=args.embedding_size,
                 rnn_type=args.rnn_type,
                 hidden_size=args.hidden_size,
                 word_dropout=args.word_dropout,
                 embedding_dropout=args.embedding_dropout,
                 latent_size=args.latent_size,
                 max_sequence_length=args.max_sequence_length,
                 num_layers=args.num_layers,
                 bidirectional=args.bidirectional,
                 pad_idx=pad_idx,
                 sos_idx=sos_idx,
                 eos_idx=eos_idx,
                 unk_idx=unk_idx)
    model.to(device)
    # Loss and optimizer
    optimizer = torch.optim.Adam(model.parameters(), lr=args.learning_rate)

    # Train the models
    total_step = len(train_data_loader)
    step_for_kl_annealing = 0
    best_valid_loss = float("inf")
    patience = 0

    for epoch in range(args.num_epochs):
        for i, (images, captions, lengths) in enumerate(train_data_loader):

            # Set mini-batch dataset
            images = images.to(device)
            captions_src = captions[:, :captions.size()[1] - 1]
            captions_tgt = captions[:, 1:]
            captions_src = captions_src.to(device)
            captions_tgt = captions_tgt.to(device)
            lengths = lengths - 1
            lengths = lengths.to(device)

            # Forward, backward and optimize
            logp, mean, logv, z = model(images, captions_src, lengths)

            #loss calculation
            NLL_loss, KL_loss, KL_weight = loss_fn(logp, captions_tgt, lengths,
                                                   mean, logv,
                                                   args.anneal_function,
                                                   step_for_kl_annealing,
                                                   args.k, args.x0)

            loss = (NLL_loss + KL_weight * KL_loss) / args.batch_size

            # backward + optimization
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            step_for_kl_annealing += 1

            # Print log info
            if i % args.log_step == 0:
                print(
                    'Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}, Perplexity: {:5.4f}'
                    .format(epoch, args.num_epochs, i, total_step, loss.item(),
                            np.exp(loss.item())))
                outputs = model._sample(logp)
                outputs = outputs.cpu().numpy()

                # Convert word_ids to words
                sampled_caption = []
                ground_truth_caption = []
                for word_id in outputs[-1]:
                    word = vocab.idx2word[word_id]
                    sampled_caption.append(word)
                    if word == '<end>':
                        break

                captions_tgt = captions_tgt.cpu().numpy()
                for word_id in captions_tgt[-1]:
                    word = vocab.idx2word[word_id]
                    ground_truth_caption.append(word)
                    if word == '<end>':
                        break
                reconstructed = ' '.join(sampled_caption)
                ground_truth = ' '.join(ground_truth_caption)
                print("ground_truth: {0} \n reconstructed: {1}\n".format(
                    ground_truth, reconstructed))

            # Save the model checkpoints
            if (i + 1) % args.save_step == 0:
                torch.save(
                    model.state_dict(),
                    os.path.join(args.model_path,
                                 'model-{}-{}.ckpt'.format(epoch + 1, i + 1)))

        torch.save(
            model.state_dict(),
            os.path.join(args.model_path,
                         'model-{}-epoch.ckpt'.format(epoch + 1)))

        valid_loss = 0

        #check against validation set and early stop if the validation score is not improving within patience period
        for j, (images, captions, lengths) in enumerate(valid_data_loader):
            # Set mini-batch dataset
            images = images.to(device)
            captions_src = captions[:, :captions.size()[1] - 1]
            captions_tgt = captions[:, 1:]
            captions_src = captions_src.to(device)
            captions_tgt = captions_tgt.to(device)
            lengths = lengths - 1
            lengths = lengths.to(device)

            # Forward, backward and optimize
            logp, mean, logv, z = model(images, captions_src, lengths)

            # loss calculation
            NLL_loss, KL_loss, KL_weight = loss_fn(logp, captions_tgt, lengths,
                                                   mean, logv,
                                                   args.anneal_function,
                                                   step_for_kl_annealing,
                                                   args.k, args.x0)

            valid_loss += (NLL_loss + KL_weight * KL_loss) / args.batch_size

            if j == 2:
                break
        print("validation loss for epoch {}: {}".format(epoch + 1, valid_loss))
        print("patience is at {}".format(patience))
        if valid_loss < best_valid_loss:
            best_valid_loss = valid_loss
            patience = 0
        else:
            patience += 1

        if patience == 5:
            print("early stopping at epoch {}".format(epoch + 1))
            break
Пример #9
0
    test_size = 10000
    random_vector_for_generation = tf.random.normal(
        shape=[num_examples_to_generate, latent_dim])
    classifier = Classifier(shape=(28, 28, 1))
    classifier_path = checkpoint_path = "./checkpoints/classifier"
    cls = tf.train.Checkpoint(classifier=classifier)
    cls_manager = tf.train.CheckpointManager(cls,
                                             classifier_path,
                                             max_to_keep=5)
    inception_model = Inception_score()
    if cls_manager.latest_checkpoint:
        cls.restore(cls_manager.latest_checkpoint)
        print('classifier checkpoint restored!!')
    for i in range(10, 0, -1):
        epochs = 0
        model = CVAE(latent_dim=latent_dim, beta=3)
        sample_size = i * 100
        train_size = sample_size * 10
        train_images = divide_dataset(train_set, train_labels, sample_size)
        #train_size = 10000
        #train_images = train_set
        batch_size = 32

        train_dataset = (tf.data.Dataset.from_tensor_slices(
            train_images).shuffle(train_size).batch(batch_size))
        test_dataset = (tf.data.Dataset.from_tensor_slices(
            test_images).shuffle(test_size).batch(batch_size))
        date = '3_4/'
        str_i = str(i)
        file_path = 'sample_test' + str_i
        start_train(epochs, model, train_dataset, test_dataset, date,
    torch.backends.cudnn.benchmark = False

    # fetch data
    data = locate('data.get_%s' % args.dataset)(args)

    # make dataloaders
    train_loader, val_loader, test_loader = [
        CLDataLoader(elem, args, train=t)
        for elem, t in zip(data, [True, False, False])
    ]

    model = ResNet18(args.n_classes, nf=20,
                     input_size=args.input_size).to(args.device)
    opt = torch.optim.SGD(model.parameters(), lr=0.1)

    gen = CVAE(20, args).cuda()  # this is actually an autoencoder
    opt_gen = torch.optim.Adam(gen.parameters())

    # build buffer
    if args.store_latents:
        buffer = Buffer(args, input_size=(20 * 4 * 4, ))
    else:
        buffer = Buffer(args)

    buffer.min_per_class = 0
    print('multiple heads ', args.multiple_heads)

    if run == 0:
        print("number of classifier parameters:",
              sum([np.prod(p.size()) for p in model.parameters()]))
        print("number of generator parameters: ",
Пример #11
0
def load_model(PATH):
    model = CVAE(2, 128)
    # Restore the weights
    model.load_weights(PATH)
    return model
Пример #12
0
# testing instances
test_loader = torch.utils.data.DataLoader(
    datasets.MNIST(
        '../data', train=False,
        transform=transforms.ToTensor()
    ),
    batch_size=args.batch_size, shuffle=False, **kwargs)

isVAE = True
# initialize the model
if args.model == "VAE" or args.model == "VAE_INC":
    model = VAE()
elif args.model == "CVAE_LB":
    isVAE = False
    model = CVAE(784, 400, 20, 10, False)
else:
    isVAE = False
    model = CVAE(784, 400, 20, 784, False)

if args.cuda:
    model.cuda()

# Binary Cross-Entropy loss
if args.loss == "MSE":
    reconstruction_function = nn.MSELoss()
else:
    reconstruction_function = nn.BCELoss()

reconstruction_function.size_average = False
Пример #13
0
labelled, unlabelled, validation = get_mnist(
    location="./data",
    batch_size=args.batch_size,
    labels_per_class=args.labels_per_class)

prev_loss = float('inf')

X = 784
Y = 10
Z = 20
H = 400
C = [400, 128]
if args.architecture == 'vae':
    model = VAE(X, Y, Z, H)
elif args.architecture == 'cvae':
    model = CVAE(X, Y, Z, H, C)
elif args.architecture == 'stackedvae':
    vae = VAE(X, Y, Z, H)
    vae.load_state_dict(torch.load(args.pretrained_vae))
    model = StackedVAE(X, Y, Z, H, C, vae)
elif args.architecture == 'gmvae':
    model = GMVAE(X, Y, Z, H, C)
else:
    raise ValueError('Model architecture {} is not defined'.format(
        args.architecture))
model = model.to(device)
optimizer = optim.Adam(model.parameters(), lr=1e-3)


def train(epoch):
    model.train()
Пример #14
0
def train(args, train_dataloader, valid_dataloader):
    torch.manual_seed(87)
    torch.cuda.manual_seed(87)

    model = {'autoen': cc(CVAE()), 'discri': cc(Discriminator())}
    autoencoder, discriminator = model['autoen'], model['discri']

    criterion = torch.nn.MSELoss()

    optimizer = {
        'autoen_adam': torch.optim.Adam(autoencoder.parameters(), lr=args.lr),
        'autoen_sgd': torch.optim.SGD(autoencoder.parameters(), lr=args.lr),
        'discri_sgd': torch.optim.SGD(discriminator.parameters(), lr=args.lr)
    }

    ##########################################################################
    ##########             [Stage 1] train autoencoder              ##########

    ##round1
    avg_loss = _run_train_autoencoder(model, criterion, optimizer,
                                      train_dataloader)
    ##round2
    avg_loss = _run_train_autoencoder(model, criterion, optimizer,
                                      train_dataloader)
    ##round3
    avg_loss = _run_train_autoencoder(model, criterion, optimizer,
                                      train_dataloader)
    ##round4
    avg_loss = _run_train_autoencoder(model, criterion, optimizer,
                                      train_dataloader)

    torch.save({'state_dict': autoencoder.state_dict()},
               "{}/stage_1_autoencoder_loss_{:.4f}.pt".format(
                   args.save_path, avg_loss))

    print(
        "\t [stage 1] trained autoencoder, avg reconstruct loss:{:.4f}".format(
            avg_loss))
    print('\t----------------------------------------------------------')

    ##########################################################################
    #########             [Stage 2] train discriminator              #########

    ##round1
    avg_loss = _run_train_discriminator(model, criterion, optimizer,
                                        train_dataloader)
    ##round2
    avg_loss = _run_train_discriminator(model, criterion, optimizer,
                                        train_dataloader)
    ##round3
    avg_loss = _run_train_discriminator(model, criterion, optimizer,
                                        train_dataloader)

    torch.save({'state_dict': discriminator.state_dict()},
               "{}/stage_2_discriminat_loss_{:.4f}.pt".format(
                   args.save_path, avg_loss))

    print("\t [stage 2] trained discriminator, avg mse loss:{:.4f}".format(
        avg_loss))
    print('\t----------------------------------------------------------')

    ##########################################################################
    ########              [Stage 3] adverserial training             #########
    print("\t [stage 3] adversarial training ")

    for epoch in range(args.epoch):
        print(f' Epoch {epoch}')

        avg_auto_loss, avg_disc_loss = _run_train_adversarial(
            model, criterion, optimizer, train_dataloader)
        print(
            "\t [Info] Train, avg autoenc loss:{:.4f}, avg discri loss:{:.4f}".
            format(avg_auto_loss, avg_disc_loss))

        avg_auto_loss, avg_disc_loss = _run_eval(model, criterion,
                                                 valid_dataloader)
        print(
            "\t [Info] Valid, avg autoenc recons loss:{:.4f},avg discri loss:{:.4f}"
            .format(avg_auto_loss, avg_disc_loss))

        if True or loss < best_loss:
            torch.save({'state_dict': autoencoder.state_dict()},
                       "{}/epoch_{}_autoencoder_loss_{:.4f}.pt".format(
                           args.save_path, epoch, avg_auto_loss))
            torch.save({'state_dict': discriminator.state_dict()},
                       "{}/epoch_{}_discriminat_loss_{:.4f}.pt".format(
                           args.save_path, epoch, avg_disc_loss))
            print(
                f'\t [Info] save weights at {args.save_path}/epoch_{epoch}_...'
            )

        print('\t----------------------------------------------------------')
def main():

    args = parse_args()
    processeddata_dir = \
        "../Hanover_Dataset/HannoverDataset/processed_data/juncs_trips_%02.0f.npy"%args.min_trips
    rawdata_file = "../Hanover_Dataset/HannoverDataset"

    # Process and save the data
    if args.process_data:
        junctTrajs_dirs = sorted(
            glob.glob(os.path.join(rawdata_file, "junctTrajs/*.csv")))
        junctions_dir = os.path.join(rawdata_file, "junctions.csv")

        juncs_trips = preprocess(junctTrajs_dirs,
                                 junctions_dir,
                                 min_trips=args.min_trips,
                                 upper_threshold=args.upper_threshold,
                                 lower_threshold=args.lower_threshold,
                                 window_size=args.window_size)
        np.save(processeddata_dir, juncs_trips)
    else:
        juncs_trips = np.load(processeddata_dir)

    # Load the sequence data using the sliding window scheme
    data_loader = Load_data(juncs_trips,
                            window_size=args.window_size,
                            stride=args.stride)

    # Load the sequence data and get the data index
    data = [sequence for sequence in data_loader.sliding_window()]
    data = np.reshape(data, (-1, 19))  # data index + features = 10 + 9 = 19

    # Note, due to the data imbalance,
    # merge tram_rails (-1) and yield_sigh (1) to priority_sign (2)
    if args.num_classes == 3:
        data[data[:, 2] == -1, 2] = 2
        data[data[:, 2] == 1, 2] = 2

        # # Filter out -1 and 1
        # data = data[data[:, 2]!=-1, :]
        # data = data[data[:, 2]!=1, :]

        # new target class:
        # uncontrolled:0,
        # traffic_light:1,
        # tram_rails/yield_sigh/priority_sign
        data[data[:, 2] == 4, 2] = 1

    # Filter out 3:"stop S." and 5:"roundabout"
    data = data[data[:, 2] != 3, :]
    data = data[data[:, 2] != 5, :]

    # Normalize the features
    data[:, 10:] = normalization(data[:, 10:])

    # Get the class label
    label = data[:, 2].astype(int)
    assert args.num_classes == len(
        np.unique(label)), "The number of classes is not correct"
    _label = np.eye(args.num_classes)[label].reshape(-1, args.window_size,
                                                     args.num_classes)

    # Question: how to do the data partitioning
    data = np.reshape(data, (-1, args.window_size, 19))
    print(data.shape)

    train_val_split = data_partition(data, args)

    train_data_index = data[train_val_split,
                            -1, :10]  # the last step of the sliding window
    # 10/0: junc_utm_to_center,
    # 11/1: utm_east,
    # 12/2: utm_north,
    # 13/3: utm_east_speed,
    # 14/4: utm_east_speed,
    # 15/5: speed_1,
    # 16/6: speed_2, (old table speed)
    # 17/7: delta_time
    # 18/8: angle

    # =============================================================================
    #     train_x = data[train_val_split, :, 10:19]
    #     train_x = np.concatenate((train_x[:, :, 0:6], train_x[:, :, 7:8]), axis=2) # skip the old speed
    #     train_y = _label[train_val_split, -1, :] # the last step of the sliding window
    #
    #     val_data_index = data[~train_val_split, -1, :10] # the last step of the sliding window
    #     val_x = data[~train_val_split, :, 10:19]
    #     val_x = np.concatenate((val_x[:, :, 0:6], val_x[:, :, 7:8]), axis=2)
    #     val_y = _label[~train_val_split, -1, :] # the last step of the sliding window
    # =============================================================================

    # ToDo, feature/ablation
    # remove delta_t
    train_x = data[train_val_split, :, 10:19]
    train_x = np.concatenate((train_x[:, :, 0:5], train_x[:, :, 7:8]), axis=2)
    # train_x = train_x[:, :, 2:5]
    train_y = _label[train_val_split, -1, :]
    val_data_index = data[~train_val_split, -1, :10]
    val_x = data[~train_val_split, :, 10:19]
    val_x = np.concatenate((val_x[:, :, 0:5], val_x[:, :, 7:8]), axis=2)
    # val_x = val_x[:, :, 2:5]
    val_y = _label[~train_val_split, -1, :]

    print(
        np.unique(np.argmax(val_y.reshape(-1, args.num_classes), axis=1),
                  return_counts=True))

    print("train_data_index", train_data_index.shape)
    print("train_x", train_x.shape)
    print("train_y", train_y.shape)

    print("val_data_index", val_data_index.shape)
    print("val_x", val_x.shape)
    print("val_y", val_y.shape)

    ##########################################################################
    ## START THE CLASSIFICATION TASK

    # Define the callback and early stop
    if not os.path.exists("../models"):
        os.mkdir("../models")
    timestr = time.strftime("%Y%m%d-%H%M%S")
    filepath = "../models/cvae_%0.f_%s.hdf5" % (args.epochs, timestr)
    ## Eraly stop
    earlystop = EarlyStopping(monitor='val_loss',
                              mode='min',
                              verbose=1,
                              patience=args.patience)
    checkpoint = ModelCheckpoint(filepath,
                                 monitor='val_loss',
                                 verbose=0,
                                 save_best_only=True,
                                 mode='min')
    callbacks_list = [earlystop, checkpoint]

    # # Instantiate the model
    cvae = CVAE(args)
    # Contruct the cave model
    train = cvae.training()
    train.summary()

    # # Start training phase
    if args.train_mode:
        # train.load_weights("../models/cvae_500_20201008-213111_03_01_90.hdf5")
        print("Start training the model...")
        train.fit(x=[train_x, train_y],
                  y=train_y,
                  shuffle=True,
                  epochs=args.epochs,
                  batch_size=args.batch_size,
                  verbose=1,
                  callbacks=callbacks_list,
                  validation_data=([val_x, val_y], val_y))
        train.load_weights(filepath)

    else:
        print('Run pretrained model')
        # train.load_weights("../models/cvae_200_20200709-211305.hdf5")
        train.load_weights("../models/cvae_500_20201008-213111_03_01_90.hdf5")

    # # Start inference phase
    x_encoder = cvae.X_encoder()
    decoder = cvae.Decoder()
    x_encoder.summary()
    decoder.summary()

    x_latent = x_encoder.predict(val_x, batch_size=args.batch_size)
    y_primes = []
    for i, x_ in enumerate(x_latent):
        # sampling z from a normal distribution
        x_ = np.reshape(x_, [1, -1])
        z_sample = np.random.rand(1, args.z_dim)
        y_p = decoder.predict(np.column_stack([z_sample, x_]))
        y_primes.append(y_p)

    y_primes = np.reshape(y_primes, (-1, args.num_classes))

    ## Evaluation
    print("Prediction for each sliding window...")
    target_names = ['uc', 'tl', 'ps']
    eva = Evaluation(val_y.reshape(-1, args.num_classes), y_primes,
                     target_names)
    confusion_matrix = eva.cf_matrix()
    classification_report = eva.report()

    # Sum up the prediction for each trip and each junction
    print("Prediction for each arm...")
    junc_classifier = Junction_class(val_data_index, val_y, y_primes)
    arm_gt, arm_pd = junc_classifier.avg_classfier()

    arm_eva = Evaluation(arm_gt, arm_pd[:, 0], target_names, arg=False)
    arm_confusion_matrix = arm_eva.cf_matrix()
    arm_classification_report = arm_eva.report()
Пример #16
0
        output_sentence = ''.join(output_words)
        #  print('<', output_sentence)
        #  print('')
        total_bleu_score += bleu_score(pair[1], output_sentence)
        _bleu_score = total_bleu_score / len(pairs)
    #  print(f"Bleu Score: {_bleu_score}")
    return _bleu_score
        
def evaluateRandomly(encoder, decoder, n=10):
    for i in range(n):
        pair = random.choice(pairs)
        idx = np.random.randint(0, 4)
        print('>', pair[idx])
        print('=', pair[idx])
        output_words = evaluate(encoder, decoder, idx, pair[idx])
        output_sentence = ' '.join(output_words)
        print('<', output_sentence)
        print('')

def save_checkpoint(state, filename):
    torch.save(state, filename)


hidden_size = 256
latent_size = 32 
model = CVAE(input_lang.n_words, hidden_size, latent_size, input_lang.n_words).to(device)

trainIters(model, 100000, print_every=5000)

evaluateByTestData(model)
Пример #17
0
    n_classes = len(i2int)
    sos_idx = w2i['SOS']
    eos_idx = w2i['EOS']
    pad_idx = w2i['<pad>']
    unk_idx = w2i['<unk>']

    NLL = torch.nn.NLLLoss(reduction='sum', ignore_index=pad_idx)

    model = CVAE(vocab_size=len(i2w),
                 max_sequence_length=args.max_sequence_length,
                 sos_idx=sos_idx,
                 eos_idx=eos_idx,
                 pad_idx=pad_idx,
                 unk_idx=unk_idx,
                 embedding_size=args.emb_dim,
                 rnn_type=args.rnn_type,
                 hidden_size=args.hidden_size,
                 word_dropout=args.word_dropout,
                 embedding_dropout=args.embedding_dropout,
                 z_size=args.latent_size,
                 n_classes=n_classes,
                 num_layers=args.num_layers,
                 bidirectional=args.bidirectional,
                 temperature=args.temperature)

    if args.load_model is not None:
        state_dict = torch.load(args.load_model)
        print(state_dict['embedding.weight'].size(),
              model.embedding.weight.size())
        if state_dict['embedding.weight'].size(
                0) != model.embedding.weight.size(0):  # vocab changed
            state_dict['embedding.weight'] = vocab.vectors
Пример #18
0
def train(train_A_dir,
          train_B_dir,
          model_dir,
          model_name,
          random_seed,
          val_A_dir,
          val_B_dir,
          output_dir,
          tensorboard_dir,
          load_path,
          gen_eval=True):
    np.random.seed(random_seed)

    # For now, copy hyperparams used in the CycleGAN
    num_epochs = 100000
    mini_batch_size = 1  # mini_batch_size = 1 is better
    learning_rate = 0.0002
    learning_rate_decay = learning_rate / 200000
    sampling_rate = 16000
    num_mcep = 24
    frame_period = 5.0
    n_frames = 128
    lambda_cycle = 10
    lambda_identity = 5
    device = 'cuda'

    # Use the same pre-processing as the CycleGAN
    print("Begin Preprocessing")

    wavs_A = load_wavs(wav_dir=train_A_dir, sr=sampling_rate)
    wavs_B = load_wavs(wav_dir=train_B_dir, sr=sampling_rate)
    print("Finished Loading")

    f0s_A, timeaxes_A, sps_A, aps_A, coded_sps_A = world_encode_data(
        wavs=wavs_A,
        fs=sampling_rate,
        frame_period=frame_period,
        coded_dim=num_mcep)
    f0s_B, timeaxes_B, sps_B, aps_B, coded_sps_B = world_encode_data(
        wavs=wavs_B,
        fs=sampling_rate,
        frame_period=frame_period,
        coded_dim=num_mcep)
    print("Finished Encoding")

    log_f0s_mean_A, log_f0s_std_A = logf0_statistics(f0s_A)
    log_f0s_mean_B, log_f0s_std_B = logf0_statistics(f0s_B)

    print('Log Pitch A')
    print('Mean: %f, Std: %f' % (log_f0s_mean_A, log_f0s_std_A))
    print('Log Pitch B')
    print('Mean: %f, Std: %f' % (log_f0s_mean_B, log_f0s_std_B))

    coded_sps_A_transposed = transpose_in_list(lst=coded_sps_A)
    coded_sps_B_transposed = transpose_in_list(lst=coded_sps_B)

    coded_sps_A_norm, coded_sps_A_mean, coded_sps_A_std = coded_sps_normalization_fit_transoform(
        coded_sps=coded_sps_A_transposed)
    print("Input data fixed.")
    coded_sps_B_norm, coded_sps_B_mean, coded_sps_B_std = coded_sps_normalization_fit_transoform(
        coded_sps=coded_sps_B_transposed)

    if not os.path.exists(model_dir):
        os.makedirs(model_dir)
    np.savez(os.path.join(model_dir, 'logf0s_normalization.npz'),
             mean_A=log_f0s_mean_A,
             std_A=log_f0s_std_A,
             mean_B=log_f0s_mean_B,
             std_B=log_f0s_std_B)
    np.savez(os.path.join(model_dir, 'mcep_normalization.npz'),
             mean_A=coded_sps_A_mean,
             std_A=coded_sps_A_std,
             mean_B=coded_sps_B_mean,
             std_B=coded_sps_B_std)

    if val_A_dir is not None:
        validation_A_output_dir = os.path.join(output_dir, 'converted_A')
        if not os.path.exists(validation_A_output_dir):
            os.makedirs(validation_A_output_dir)

    if val_B_dir is not None:
        validation_B_output_dir = os.path.join(output_dir, 'converted_B')
        if not os.path.exists(validation_B_output_dir):
            os.makedirs(validation_B_output_dir)

    print("End Preprocessing")

    if load_path is not None:
        model = CVAE(num_mcep, 128, num_mcep, 2)
        model.load_state_dict(torch.load(load_path))
        model.eval()
        if device == 'cuda':
            model.cuda()
        print("Loaded Model from path %s" % load_path)
        if val_A_dir is not None and gen_eval:
            print("Generating Evaluation Data")
            for file in os.listdir(val_A_dir):
                filepath = os.path.join(val_A_dir, file)
                print(
                    "Converting {0} from Class 0 to Class 1".format(filepath))
                wav, _ = librosa.load(filepath, sr=sampling_rate, mono=True)
                wav = wav_padding(wav=wav,
                                  sr=sampling_rate,
                                  frame_period=frame_period,
                                  multiple=4)
                f0, timeaxis, sp, ap = world_decompose(
                    wav=wav, fs=sampling_rate, frame_period=frame_period)
                f0_converted = pitch_conversion(f0=f0,
                                                mean_log_src=log_f0s_mean_A,
                                                std_log_src=log_f0s_std_A,
                                                mean_log_target=log_f0s_mean_B,
                                                std_log_target=log_f0s_std_B)
                coded_sp = world_encode_spectral_envelop(sp=sp,
                                                         fs=sampling_rate,
                                                         dim=num_mcep)
                coded_sp_transposed = coded_sp.T
                coded_sp_norm = (coded_sp_transposed -
                                 coded_sps_A_mean) / coded_sps_A_std
                coded_sp_converted_norm, _, _ = model.convert(
                    np.array([coded_sp_norm]), 0, 1, device)
                coded_sp_converted_norm = coded_sp_converted_norm.cpu().numpy()
                coded_sp_converted_norm = np.squeeze(coded_sp_converted_norm)
                coded_sp_converted = coded_sp_converted_norm * coded_sps_B_std + coded_sps_B_mean
                coded_sp_converted = coded_sp_converted.T
                coded_sp_converted = np.ascontiguousarray(coded_sp_converted)
                decoded_sp_converted = world_decode_spectral_envelop(
                    coded_sp=coded_sp_converted, fs=sampling_rate)
                wav_transformed = world_speech_synthesis(
                    f0=f0_converted,
                    decoded_sp=decoded_sp_converted,
                    ap=ap,
                    fs=sampling_rate,
                    frame_period=frame_period)
                librosa.output.write_wav(
                    os.path.join(validation_A_output_dir,
                                 'eval_' + os.path.basename(file)),
                    wav_transformed, sampling_rate)
            exit(0)

    print("Begin Training")

    model = CVAE(num_mcep, 128, num_mcep, 2)
    optimizer = optim.Adam(model.parameters(), lr=learning_rate)
    writer = SummaryWriter(tensorboard_dir)

    if device == 'cuda':
        model.cuda()

    for epoch in tqdm(range(num_epochs)):
        dataset_A, dataset_B = sample_train_data(dataset_A=coded_sps_A_norm,
                                                 dataset_B=coded_sps_B_norm,
                                                 n_frames=n_frames)
        dataset_A = torch.tensor(dataset_A).to(torch.float)
        dataset_B = torch.tensor(dataset_B).to(torch.float)

        n_samples, input_dim, depth = dataset_A.shape
        y_A = F.one_hot(torch.zeros(depth).to(torch.int64),
                        num_classes=2).to(torch.float).T
        y_B = F.one_hot(torch.ones(depth).to(torch.int64),
                        num_classes=2).to(torch.float).T
        (y_A, y_B) = (y_A.reshape((1, 2, depth)), y_B.reshape((1, 2, depth)))
        y_A = torch.cat([y_A] * n_samples)
        y_B = torch.cat([y_B] * n_samples)

        # dataset_A = torch.cat((dataset_A, y_A), axis=1)
        # dataset_B = torch.cat((dataset_B, y_B), axis=1)

        X = torch.cat((dataset_A, dataset_B)).to(device)
        Y = torch.cat((y_A, y_B)).to(device)

        # out, z_mu, z_var = model(dataset_A, y_A)
        # rec_loss = F.binary_cross_entropy(out, dataset_A, size_average=False)
        # kl_diver = -0.5 * torch.sum(1 + z_var - z_mu.pow(2) - z_var.exp())
        out, z_mu, z_var = model(X, Y)

        rec_loss = F.binary_cross_entropy(out, X, size_average=False)
        kl_diver = -0.5 * torch.sum(1 + z_var - z_mu.pow(2) - z_var.exp())

        loss = rec_loss + kl_diver

        writer.add_scalar('Reconstruction Loss', rec_loss, epoch)
        writer.add_scalar('KL-Divergence', kl_diver, epoch)
        writer.add_scalar('Total Loss', loss, epoch)

        # print("loss = {0} || rec = {1} || kl = {2}".format(loss, rec_loss, kl_diver))

        loss.backward()
        optimizer.step()

        if val_A_dir is not None:
            if epoch % 1000 == 0:
                print('Generating Validation Data...')
                for file in os.listdir(val_A_dir):
                    filepath = os.path.join(val_A_dir, file)
                    print("Converting {0} from Class 0 to Class 1".format(
                        filepath))
                    wav, _ = librosa.load(filepath,
                                          sr=sampling_rate,
                                          mono=True)
                    wav = wav_padding(wav=wav,
                                      sr=sampling_rate,
                                      frame_period=frame_period,
                                      multiple=4)
                    f0, timeaxis, sp, ap = world_decompose(
                        wav=wav, fs=sampling_rate, frame_period=frame_period)
                    f0_converted = pitch_conversion(
                        f0=f0,
                        mean_log_src=log_f0s_mean_A,
                        std_log_src=log_f0s_std_A,
                        mean_log_target=log_f0s_mean_B,
                        std_log_target=log_f0s_std_B)
                    coded_sp = world_encode_spectral_envelop(sp=sp,
                                                             fs=sampling_rate,
                                                             dim=num_mcep)
                    coded_sp_transposed = coded_sp.T
                    coded_sp_norm = (coded_sp_transposed -
                                     coded_sps_A_mean) / coded_sps_A_std
                    coded_sp_converted_norm, _, _ = model.convert(
                        np.array([coded_sp_norm]), 0, 1, device)
                    coded_sp_converted_norm = coded_sp_converted_norm.cpu(
                    ).numpy()
                    coded_sp_converted_norm = np.squeeze(
                        coded_sp_converted_norm)
                    coded_sp_converted = coded_sp_converted_norm * coded_sps_B_std + coded_sps_B_mean
                    coded_sp_converted = coded_sp_converted.T
                    coded_sp_converted = np.ascontiguousarray(
                        coded_sp_converted)
                    decoded_sp_converted = world_decode_spectral_envelop(
                        coded_sp=coded_sp_converted, fs=sampling_rate)
                    wav_transformed = world_speech_synthesis(
                        f0=f0_converted,
                        decoded_sp=decoded_sp_converted,
                        ap=ap,
                        fs=sampling_rate,
                        frame_period=frame_period)
                    librosa.output.write_wav(
                        os.path.join(validation_A_output_dir,
                                     str(epoch) + '_' +
                                     os.path.basename(file)), wav_transformed,
                        sampling_rate)
                    break
        if epoch % 1000 == 0:
            print('Saving Checkpoint')
            filepath = os.path.join(model_dir, model_name)
            if not os.path.exists(filepath):
                os.makedirs(filepath)
            torch.save(model.state_dict(),
                       os.path.join(filepath, '{0}.ckpt'.format(epoch)))
Пример #19
0
def main(args):
    # Image preprocessing
    transform = transforms.Compose([
        transforms.Resize((224, 224), Image.LANCZOS),
        transforms.ToTensor(),
        transforms.Normalize((0.485, 0.456, 0.406),
                             (0.229, 0.224, 0.225))])

    # Load vocabulary wrapper
    with open(args.vocab_path, 'rb') as f:
        vocab = pickle.load(f)

    pad_idx = vocab.word2idx['<pad>']
    sos_idx = vocab.word2idx['<start>']
    eos_idx = vocab.word2idx['<end>']
    unk_idx = vocab.word2idx['<unk>']

    # Build the models
    model = CVAE(
        vocab_size=len(vocab),
        embedding_size=args.embedding_size,
        rnn_type=args.rnn_type,
        hidden_size=args.hidden_size,
        word_dropout=args.word_dropout,
        embedding_dropout=args.embedding_dropout,
        latent_size=args.latent_size,
        max_sequence_length=args.max_sequence_length,
        num_layers=args.num_layers,
        bidirectional=args.bidirectional,
        pad_idx=pad_idx,
        sos_idx=sos_idx,
        eos_idx=eos_idx,
        unk_idx=unk_idx
    )

    if not os.path.exists(args.load_checkpoint):
        raise FileNotFoundError(args.load_checkpoint)

    model.load_state_dict(torch.load(args.load_checkpoint))
    print("Model loaded from {}".format(args.load_checkpoint))

    model.to(device)
    model.eval()

    # Build data loader
    train_data_loader, valid_data_loader = get_loader(args.train_image_dir, args.val_image_dir,
                                                      args.train_caption_path, args.val_caption_path, vocab,
                                                      args.batch_size,
                                                      shuffle=True, num_workers=args.num_workers)

    f1 = open('{}/results/generated_captions.txt'.format(dataset_root_dir), 'w')
    f2 = open('{}/results/ground_truth_captions.txt'.format(dataset_root_dir), 'w')
    for i, (images, captions, lengths) in enumerate(valid_data_loader):
        images = images.to(device)

        sampled_ids, z = model.inference(n=args.batch_size, c=images)

        sampled_ids_batches = sampled_ids.cpu().numpy()  # (batch_size, max_seq_length)
        captions = captions.cpu().numpy()

        # Convert word_ids to words
        for j, sampled_ids in enumerate(sampled_ids_batches):
            sampled_caption = []
            for word_id in sampled_ids:
                word = vocab.idx2word[word_id]
                sampled_caption.append(word)
                if word == '<end>':
                    break
            generated_sentence = ' '.join(sampled_caption)
            generated_sentence = generated_sentence.rstrip()
            generated_sentence = generated_sentence.replace("\n", "")
            generated_sentence = "{0}\n".format(generated_sentence)
            if j == 0:
                print("RE: {}".format(generated_sentence))
            f1.write(generated_sentence)

        for g, ground_truth_ids in enumerate(captions):
            ground_truth_caption = []
            for word_id in ground_truth_ids:
                word = vocab.idx2word[word_id]
                ground_truth_caption.append(word)
                if word == '<end>':
                    break
            ground_truth_sentence = ' '.join(ground_truth_caption)
            ground_truth_sentence = ground_truth_sentence.rstrip()
            ground_truth_sentence = ground_truth_sentence.replace("\n", "")
            ground_truth_sentence = "{0}\n".format(ground_truth_sentence)
            if g == 0:
                print("GT: {}".format(ground_truth_sentence))
            f2.write(ground_truth_sentence)
        if i % 10 == 0:
            print("This is the {0}th batch".format(i))
    f1.close()
    f2.close()
Пример #20
0
def train(run_id=1):
    model = CVAE(run_id=run_id)
Пример #21
0
def main():
    config = Settings(model='GPT',
                      model_name='9.23_dropout0.1_GPT',
                      resume='best.pth')

    dataset_path = os.path.join(os.getcwd(), config.path)
    dataset_filename = config.test_file
    device = config.device
    model_dir = os.path.join(config.exp_dir, config.model_name)

    with open(os.path.join(dataset_path, dataset_filename), 'rb') as f:
        dataset = pickle.load(f)
    dataset = LightDarkDataset(config, dataset)
    data, targets = collect_data(config, dataset)

    # with open(os.path.join(dataset_path, 'light_dark_sample_len15.pickle'), 'rb') as f:
    #     sample = pickle.load(f)
    # data, targets = sample['data'], sample['targets']

    if config.model == 'GPT':
        model = GPT2(config).to(device)
    elif config.model == 'RNN':
        model = RNN(config).to(device)
    elif config.model == 'CVAE':
        model = CVAE(config).to(device)

    optimizer = th.optim.AdamW(model.parameters(),
                               lr=config.learning_rate,
                               weight_decay=config.weight_decay)

    if config.optimizer == 'AdamW':
        scheduler = th.optim.lr_scheduler.LambdaLR(
            optimizer, lambda step: min((step + 1) / config.warmup_step, 1))

    elif config.optimizer == 'AdamWR':
        scheduler = CosineAnnealingWarmUpRestarts(optimizer=optimizer,
                                                  T_0=config.T_0,
                                                  T_mult=config.T_mult,
                                                  eta_max=config.lr_max,
                                                  T_up=config.warmup_step,
                                                  gamma=config.lr_mult)
    else:
        # |FIXME| using error?exception?logging?
        print(
            f'"{config.optimizer}" is not support!! You should select "AdamW" or "AdamWR".'
        )
        return

    # load checkpoint for resuming
    if config.resume is not None:
        filename = os.path.join(model_dir, config.resume)

        if os.path.isfile(filename):
            start_epoch, best_error, model, optimizer, scheduler = load_checkpoint(
                config, filename, model, optimizer, scheduler)
            start_epoch += 1
            print("Loaded checkpoint '{}' (epoch {})".format(
                config.resume, start_epoch))
        else:
            # |FIXME| using error?exception?logging?
            print("No checkpoint found at '{}'".format(config.resume))
            return

    pred = []
    total_time = 0.

    for d in data:
        for i in range(config.num_output):
            tmp_pred, time = predict_action(config, model, d)

            pred.append(tmp_pred)
            total_time += time

    targets = np.asarray(targets).reshape(-1, 2)
    pred = np.asarray(pred).reshape(-1, 2)

    print(
        f'Inference time: {total_time / (config.num_input * config.num_output)}'
    )

    plt.xlim(-7, 7)
    plt.ylim(-7, 7)
    plt.scatter(targets[:, 0], targets[:, 1], c='red')
    plt.scatter(pred[:, 0], pred[:, 1], c='blue')
    plt.show()
    # tight_layout minimizes the overlap between 2 sub-plots
    # plt.savefig('image_at_epoch_{:04d}.png'.format(epoch))
    plt.show()


epochs = 50
# set the dimensionality of the latent space to a plane for visualization later
latent_dim = 16
num_examples_to_generate = 9

# keeping the random vector constant for generation (prediction) so
# it will be easier to see the improvement.
random_vector_for_generation = tf.random.normal(
    shape=[num_examples_to_generate, latent_dim])
model = CVAE(latent_dim)
loss = tf.keras.metrics.Mean()
model.compile(loss=loss, optimizer=optimizer, metrics=['accuracy'])

assert batch_size >= num_examples_to_generate
for test_batch in test_dataset.take(1):
    test_sample = test_batch[0:num_examples_to_generate, :, :, :]

for i in range(num_examples_to_generate):
    plt.subplot(3, 3, i + 1)
    plt.imshow(test_sample[i, :, :, :])
    plt.axis('off')

generate_and_save_images(model, 0, test_sample)

for epoch in range(1, epochs + 1):
Пример #23
0
def main():
    config = Settings()
    dataset_filename = config.dataset_file
    dataset_path = os.path.join(os.getcwd(), config.path)

    if not os.path.exists(config.exp_dir):
        os.mkdir(config.exp_dir)
    model_dir = os.path.join(config.exp_dir, config.model_name)

    logger = SummaryWriter(model_dir)

    with open(os.path.join(dataset_path, dataset_filename), 'rb') as f:
        dataset = pickle.load(f)

    print('#trajectories of dataset:', len(dataset['observation']))

    # generate dataloader
    data_loader = get_loader_multi_target(config, dataset)

    # model
    device = th.device(config.device)
    if config.model == 'GPT':
        model = GPT2(config).to(device)
    elif config.model == 'RNN':
        model = RNN(config).to(device)
    elif config.model == 'LSTM':
        model = LSTM(config).to(device)
    elif config.model == 'CVAE':
        model = CVAE(config).to(device)
    else:
        raise Exception(
            f'"{config.model}" is not support!! You should select "GPT", "RNN", or "LSTM".'
        )

    # optimizer
    optimizer = th.optim.AdamW(model.parameters(),
                               lr=config.learning_rate,
                               weight_decay=config.weight_decay)

    # learning rate scheduler
    if config.optimizer == 'AdamW':
        scheduler = th.optim.lr_scheduler.LambdaLR(
            optimizer, lambda step: min((step + 1) / config.warmup_step, 1))
    elif config.optimizer == 'AdamWR':
        scheduler = CosineAnnealingWarmUpRestarts(optimizer=optimizer,
                                                  T_0=config.T_0,
                                                  T_mult=config.T_mult,
                                                  eta_max=config.lr_max,
                                                  T_up=config.warmup_step,
                                                  gamma=config.lr_mult)
    else:
        raise Exception(
            f'"{config.optimizer}" is not support!! You should select "AdamW" or "AdamWR".'
        )

    # Metric
    if config.model == 'CVAE':
        eval_fn = NNMSE
    else:
        eval_fn = NMSE

    # Trainer & Evaluator

    evaluator = MultiTargetEvaluator(config=config,
                                     loader=data_loader,
                                     model=model,
                                     eval_fn=eval_fn)

    # load checkpoint for resuming
    for ckpt in config.resume:
        filename = os.path.join(model_dir, ckpt)
        if os.path.isfile(filename):
            epoch, best_error, model, optimizer, scheduler = load_checkpoint(
                config, filename, model, optimizer, scheduler)
            print("Loaded checkpoint '{}' (epoch {})".format(ckpt, epoch))
        else:
            raise Exception("No checkpoint found at '{}'".format(ckpt))

        print(f'===== Evaluate {epoch} epoch =====')

        test_val = evaluator.eval(epoch)

        # Logging
        logger.add_scalar('Eval/Near-Nearest MSE', test_val, epoch)

        print(f'===== End {epoch} epoch =====')
Пример #24
0
        (train_images, train_y)).shuffle(train_size).batch(args.batch_size))
    test_dataset = (tf.data.Dataset.from_tensor_slices(
        (test_images, test_y)).shuffle(test_size).batch(args.batch_size))

    optimizer = tf.keras.optimizers.Adam(1e-4)

    # # test
    # model = CVAE(latent_dim, inter_dim)
    # for test_batch in test_dataset.take(1):
    #     test_sample_x = test_batch[0][0:num_examples_to_generate, :, :, :]
    #     test_sample_y = test_batch[1][0:num_examples_to_generate]

    # generate_and_save_images(model, 0, test_sample_x, test_sample_y)

    # reset
    model = CVAE(args.latent_dim, args.inter_dim)

    for epoch in range(args.EPOCHS):
        for train in train_dataset:
            train_step(model, train[0], train[1], optimizer)
            with train_summary_writer.as_default():
                tf.summary.scalar('loss', train_loss.result(), step=epoch)

        for test in test_dataset:
            test_step(model, test[0], test[1])
            with test_summary_writer.as_default():
                tf.summary.scalar('loss', test_loss.result(), step=epoch)

        template = 'Epoch {}, Loss: {}, Test Loss: {}'
        print(
            template.format(epoch + 1, train_loss.result(),
Пример #25
0
Файл: train.py Проект: tbrx/CVAE
vocab_size = len(char)

num_train_data = int(len(molecules)*0.75)
train_molecules = molecules[0:num_train_data]
test_molecules = molecules[num_train_data:-1]

train_labels = labels[0:num_train_data]
test_labels = labels[num_train_data:-1]

train_length = length[0:num_train_data]
test_length = length[num_train_data:-1]

model = CVAE(vocab_size,
             batch_size = batch_size,
             latent_size = latent_size,
             stddev = 1.0,
             mean = 0.0,
             )

num_epochs    = 200
save_every    = 500
learning_rate = 0.0001
temperature = 1.0
min_temperature = 0.5
decay_rate    = 0.95
for epoch in range(num_epochs):
    # Learning rate scheduling 
    st = time.time()
    model.assign_lr(learning_rate * (decay_rate ** epoch))
    train_loss = []
    test_loss = []
Пример #26
0
raw_data = list(filter(lambda x: len(x[0]) <= opt.max_len, raw_data))
print("Load %d datapoints." % len(raw_data))

train_data, val_data, vocab = mydataset.make_dataset(raw_data, opt)
opt.max_words = min(opt.max_words, len(vocab) - 4)
train_iter, val_iter = mydataset.make_iterator((train_data, val_data), opt)
device = T.device(opt.device)

start_time = datetime.now().strftime("%Y%m%d-%H%M%S")

layout = [('model={:s}', 'cvae'), ('z={:02d}', opt.z_dim),
          ('time={:s}', start_time), ('data={:s}', opt.dataset)]
model_name = '_'.join([t.format(v) for (t, v) in layout])
writer = ut.prepare_writer(model_name, overwrite_existing=False)

model = CVAE(opt).to(device)
model.embedding.weight.data.copy_(vocab.vectors).to(device)

train_gen = mydataset.make_loader(train_iter, opt)
val_gen = mydataset.make_loader(val_iter, opt)
if opt.mode == 'train':
    train(model=model,
          train_loader=train_gen,
          val_loader=val_gen,
          tqdm=tqdm.tqdm,
          device=device,
          writer=writer,
          start_time=start_time,
          dataset_name=opt.dataset,
          iter_max=opt.max_iter,
          iter_log=opt.log_iter,
Пример #27
0
def main(**kwargs):
    """
    Main function that trains the model
    1. Retrieve arguments from kwargs
    2. Prepare data
    3. Train
    4. Display and save first batch of training set (truth and reconstructed) after every epoch
    5. If latent dimension is 2, display and save latent variable of first batch of training set after every epoch
    
    Args:
        dataset: Which dataset to use
        decoder_type: How to model the output pixels, Gaussian or Bernoulli
        model_sigma: In case of Gaussian decoder, whether to model the sigmas too
        epochs: How many epochs to train model
        batch_size: Size of training / testing batch
        lr: Learning rate
        latent_dim: Dimension of latent variable
        print_every: How often to print training progress
        resume_path: The path of saved model with which to resume training
        resume_epoch: In case of resuming, the number of epochs already done 

    Notes:
        - Saves model to folder 'saved_model/' every 20 epochs and when done
        - Capable of training from scratch and resuming (provide saved model location to argument resume_path)
        - Schedules learning rate with optim.lr_scheduler.ReduceLROnPlateau
            : Decays learning rate by 1/10 when mean loss of all training data does not decrease for 10 epochs
    """
    # Retrieve arguments
    dataset = kwargs.get('dataset', defaults['dataset'])
    decoder_type = kwargs.get('decoder_type', defaults['decoder_type'])
    if decoder_type == 'Gaussian':
        model_sigma = kwargs.get('model_sigma', defaults['model_sigma'])
    epochs = kwargs.get('epochs', defaults['epochs'])
    batch_size = kwargs.get('batch_size', defaults['batch_size'])
    lr = kwargs.get('learning_rate', defaults['learning_rate'])
    latent_dim = kwargs.get('latent_dim', defaults['latent_dim'])
    print_every = kwargs.get('print_every', defaults['print_every'])
    resume_path = kwargs.get('resume_path', defaults['resume_path'])
    resume_epoch = kwargs.get('resume_epoch', defaults['resume_epoch'])

    # Specify dataset transform on load
    if decoder_type == 'Bernoulli':
        trsf = transforms.Compose([
            transforms.ToTensor(),
            transforms.Lambda(lambda x: (x >= 0.5).float())
        ])
    elif decoder_type == 'Gaussian':
        trsf = transforms.ToTensor()

    # Load dataset with transform
    if dataset == 'MNIST':
        train_data = datasets.MNIST(root='MNIST',
                                    train=True,
                                    transform=trsf,
                                    download=True)
        test_data = datasets.MNIST(root='MNIST',
                                   train=False,
                                   transform=trsf,
                                   download=True)
    elif dataset == 'CIFAR10':
        train_data = datasets.CIFAR10(root='CIFAR10',
                                      train=True,
                                      transform=trsf,
                                      download=True)
        test_data = datasets.CIFAR10(root='CIFAR10',
                                     train=False,
                                     transform=trsf,
                                     download=True)

    # Instantiate dataloader
    train_loader = torch.utils.data.DataLoader(train_data,
                                               batch_size=batch_size,
                                               shuffle=True)
    test_loader = torch.utils.data.DataLoader(test_data,
                                              batch_size=batch_size,
                                              shuffle=False)

    # Instantiate/Load model and optimizer
    if resume_path:
        autoencoder = torch.load(resume_path, map_location=device)
        optimizer = optim.Adam(autoencoder.parameters(), lr=lr)
        print('Loaded saved model at ' + resume_path)
    else:
        if decoder_type == 'Bernoulli':
            autoencoder = CVAE(latent_dim, dataset, decoder_type).to(device)
        else:
            autoencoder = CVAE(latent_dim, dataset, decoder_type,
                               model_sigma).to(device)
        optimizer = optim.Adam(autoencoder.parameters(), lr=lr)

    # Instantiate learning rate scheduler
    scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer,
                                                     'min',
                                                     verbose=True,
                                                     patience=5)

    # Announce current mode
    print(
        f'Start training CVAE with Gaussian encoder and {decoder_type} decoder on {dataset} dataset from epoch {resume_epoch+1}'
    )

    # Prepare batch to display with plt
    first_test_batch, first_test_batch_label = iter(test_loader).next()
    first_test_batch, first_test_batch_label = first_test_batch.to(
        device), first_test_batch_label.to(device)

    # Display latent variable distribution before any training
    if latent_dim == 2 and resume_epoch == 0:
        autoencoder(first_test_batch, first_test_batch_label)
        display_and_save_latent(autoencoder.z, first_test_batch_label,
                                f'-{decoder_type}-z{latent_dim}-e000')

    # Train
    autoencoder.train()
    for epoch in range(resume_epoch, epochs + resume_epoch):
        loss_hist = []
        for batch_ind, (input_data, input_label) in enumerate(train_loader):
            input_data, input_label = input_data.to(device), input_label.to(
                device)

            # Forward propagation
            if decoder_type == 'Bernoulli':
                z_mu, z_sigma, p = autoencoder(input_data, input_label)
            elif model_sigma:
                z_mu, z_sigma, out_mu, out_sigma = autoencoder(
                    input_data, input_label)
            else:
                z_mu, z_sigma, out_mu = autoencoder(input_data, input_label)

            # Calculate loss
            KL_divergence_i = 0.5 * torch.sum(
                z_mu**2 + z_sigma**2 - torch.log(1e-8 + z_sigma**2) - 1.,
                dim=1)
            if decoder_type == 'Bernoulli':
                reconstruction_loss_i = -torch.sum(F.binary_cross_entropy(
                    p, input_data, reduction='none'),
                                                   dim=(1, 2, 3))
            elif model_sigma:
                reconstruction_loss_i = -0.5 * torch.sum(
                    torch.log(1e-8 + 6.28 * out_sigma**2) +
                    ((input_data - out_mu)**2) / (out_sigma**2),
                    dim=(1, 2, 3))
            else:
                reconstruction_loss_i = -0.5 * torch.sum(
                    (input_data - out_mu)**2, dim=(1, 2, 3))
            ELBO_i = reconstruction_loss_i - KL_divergence_i
            loss = -torch.mean(ELBO_i)

            loss_hist.append(loss)

            # Backward propagation
            optimizer.zero_grad()
            loss.backward()

            # Update parameters
            optimizer.step()

            # Print progress
            if batch_ind % print_every == 0:
                train_log = 'Epoch {:03d}/{:03d}\tLoss: {:.6f}\t\tTrain: [{}/{} ({:.0f}%)]           '.format(
                    epoch + 1, epochs + resume_epoch,
                    loss.cpu().item(), batch_ind + 1, len(train_loader),
                    100. * batch_ind / len(train_loader))
                print(train_log, end='\r')
                sys.stdout.flush()

        # Learning rate decay
        scheduler.step(sum(loss_hist) / len(loss_hist))

        # Save model every 20 epochs
        if (epoch + 1) % 20 == 0 and epoch + 1 != epochs:
            PATH = f'saved_model/{dataset}-{decoder_type}-e{epoch+1}-z{latent_dim}' + datetime.datetime.now(
            ).strftime("-%b-%d-%H-%M-%p")
            torch.save(autoencoder, PATH)
            print('\vTemporarily saved model to ' + PATH)

        # Display training result with test set
        data = f'-{decoder_type}-z{latent_dim}-e{epoch+1:03d}'
        with torch.no_grad():
            autoencoder.eval()
            if decoder_type == 'Bernoulli':
                z_mu, z_sigma, p = autoencoder(first_test_batch,
                                               first_test_batch_label)
                output = torch.bernoulli(p)

                if latent_dim == 2:
                    display_and_save_latent(autoencoder.z,
                                            first_test_batch_label, data)

                display_and_save_batch("Binarized-truth",
                                       first_test_batch,
                                       data,
                                       save=(epoch == 0))
                display_and_save_batch("Mean-reconstruction",
                                       p,
                                       data,
                                       save=True)
                display_and_save_batch("Sampled-reconstruction",
                                       output,
                                       data,
                                       save=True)

            elif model_sigma:
                z_mu, z_sigma, out_mu, out_sigma = autoencoder(
                    first_test_batch, first_test_batch_label)
                output = torch.normal(out_mu, out_sigma).clamp(0., 1.)

                if latent_dim == 2:
                    display_and_save_latent(autoencoder.z,
                                            first_test_batch_label, data)

                display_and_save_batch("Truth",
                                       first_test_batch,
                                       data,
                                       save=(epoch == 0))
                display_and_save_batch("Mean-reconstruction",
                                       out_mu,
                                       data,
                                       save=True)
                # display_and_save_batch("Sampled reconstruction", output, data, save=True)

            else:
                z_mu, z_sigma, out_mu = autoencoder(first_test_batch,
                                                    first_test_batch_label)
                output = torch.normal(out_mu,
                                      torch.ones_like(out_mu)).clamp(0., 1.)

                if latent_dim == 2:
                    display_and_save_latent(autoencoder.z,
                                            first_test_batch_label, data)

                display_and_save_batch("Truth",
                                       first_test_batch,
                                       data,
                                       save=(epoch == 0))
                display_and_save_batch("Mean-reconstruction",
                                       out_mu,
                                       data,
                                       save=True)
                # display_and_save_batch("Sampled reconstruction", output, data, save=True)
            autoencoder.train()

    # Save final model
    PATH = f'saved_model/{dataset}-{decoder_type}-e{epochs+resume_epoch}-z{latent_dim}' + datetime.datetime.now(
    ).strftime("-%b-%d-%H-%M-%p")
    torch.save(autoencoder, PATH)
    print('\vSaved model to ' + PATH)
Пример #28
0
#divide data into training and test set
num_train_data = int(len(molecules_input) * 0.75)
train_molecules_input = molecules_input[0:num_train_data]
test_molecules_input = molecules_input[num_train_data:-1]

train_molecules_output = molecules_output[0:num_train_data]
test_molecules_output = molecules_output[num_train_data:-1]

train_labels = labels[0:num_train_data]
test_labels = labels[num_train_data:-1]

train_length = length[0:num_train_data]
test_length = length[num_train_data:-1]

model = CVAE(vocab_size, args)
print('Number of parameters : ',
      np.sum([np.prod(v.shape) for v in tf.trainable_variables()]))

for epoch in range(args.num_epochs):

    st = time.time()
    # Learning rate scheduling
    #model.assign_lr(learning_rate * (decay_rate ** epoch))
    train_loss = []
    test_loss = []
    st = time.time()

    for iteration in range(len(train_molecules_input) // args.batch_size):
        n = np.random.randint(len(train_molecules_input), size=args.batch_size)
        x = np.array([train_molecules_input[i] for i in n])
Пример #29
0
def main():
    config = Settings()
    # |TODO| go to Setting()
    train_filename = config.train_file
    # train_filename_1 = config.train_file_1
    # train_filename_2 = config.train_file_2
    test_filename = config.test_file
    dataset_path = os.path.join(os.getcwd(), config.path)

    if not os.path.exists(config.exp_dir):
        os.mkdir(config.exp_dir)
    model_dir = os.path.join(config.exp_dir, config.model_name)

    logger = SummaryWriter(model_dir)

    if config.data_type == 'success':
        # with open(os.path.join(dataset_path, train_filename), 'rb') as f:
        #     train_dataset = pickle.load(f)
        # with open(os.path.join(dataset_path, test_filename), 'rb') as f:
        #     test_dataset = pickle.load(f)

        dataset = glob.glob(f'{dataset_path}/{train_filename}/*.pickle')
        # test_dataset = glob.glob(f'{dataset_path}/{test_filename}/*.pickle')
        # train_dataset = dataset[:1500000]
        # test_dataset = dataset[-200000:]
        train_dataset = dataset[:-20000]
        test_dataset = dataset[-20000:]

        print('#trajectories of train_dataset:', len(train_dataset))
        print('#trajectories of test_dataset:', len(test_dataset))

    elif config.data_type == 'mcts':
        dataset = glob.glob(f'{dataset_path}/{train_filename}/*.pickle')
        train_dataset = dataset[:-20000]
        test_dataset = dataset[-20000:]

        # train_dataset = glob.glob(f'{dataset_path}/{train_filename}/*.pickle')
        # test_dataset = glob.glob(f'{dataset_path}/{test_filename}/*.pickle')

        if config.filter:
            filtered_data_train = []
            filtered_data_test = []
            total_reward_filt = []
            total_reward_not_filt = []
            avg_total_reward_not_filt = 0
            avg_total_reward_filt = 0
            for data in train_dataset:
                with open(data, 'rb') as f:
                    traj = pickle.load(f)
                    avg_total_reward_not_filt += traj[-1]
                    total_reward_not_filt.append(traj[-1])
                    if traj[-1] > config.filter:
                        filtered_data_train.append(data)
                        avg_total_reward_filt += traj[-1]
                        total_reward_filt.append(traj[-1])

            for data in test_dataset:
                with open(data, 'rb') as f:
                    traj = pickle.load(f)
                    if traj[-1] > config.filter:
                        filtered_data_test.append(data)

            total_reward_not_filt_std = np.std(
                np.asarray(total_reward_not_filt))
            total_reward_filt_std = np.std(np.asarray(total_reward_filt))
            print('Average of total reward(not filtered):',
                  avg_total_reward_not_filt / len(train_dataset))
            print('std of total reward(not filtered):',
                  total_reward_not_filt_std)
            print('Average of total reward(filtered):',
                  avg_total_reward_filt / len(filtered_data_train))
            print('std of total reward(filtered):', total_reward_filt_std)

            train_dataset = filtered_data_train
            test_dataset = filtered_data_test

        print('#trajectories of train_dataset:', len(train_dataset))
        print('#trajectories of test_dataset:', len(test_dataset))

    # # For mixed dataset
    # train_dataset_1 = glob.glob(f'{dataset_path}/{train_filename_1}/*.pickle')

    # dataset_2 = glob.glob(f'{dataset_path}/{train_filename_2}/*.pickle')
    # train_dataset_2 = dataset_2[:100000]
    # test_dataset = dataset_2[100000:]

    # if config.filter:
    #     filtered_data_train = []
    #     filtered_data_test = []
    #     total_reward_filt = []
    #     total_reward_not_filt = []
    #     avg_total_reward_not_filt = 0
    #     avg_total_reward_filt = 0
    #     for data in train_dataset_2:
    #         with open(data, 'rb') as f:
    #             traj = pickle.load(f)
    #             avg_total_reward_not_filt += traj[-1]
    #             total_reward_not_filt.append(traj[-1])
    #             if traj[-1] > config.filter:
    #                 filtered_data_train.append(data)
    #                 avg_total_reward_filt += traj[-1]
    #                 total_reward_filt.append(traj[-1])

    #     for data in test_dataset:
    #         with open(data, 'rb') as f:
    #             traj = pickle.load(f)
    #             if traj[-1] > config.filter:
    #                 filtered_data_test.append(data)

    #     total_reward_not_filt_std = np.std(np.asarray(total_reward_not_filt))
    #     total_reward_filt_std = np.std(np.asarray(total_reward_filt))
    #     print('Average of total reward(not filtered):', avg_total_reward_not_filt/len(train_dataset_2))
    #     print('std of total reward(not filtered):', total_reward_not_filt_std)
    #     print('Average of total reward(filtered):', avg_total_reward_filt/len(filtered_data_train))
    #     print('std of total reward(filtered):', total_reward_filt_std)

    #     train_dataset = train_dataset_1 + filtered_data_train
    #     test_dataset = filtered_data_test

    # print('#trajectories of train_dataset:', len(train_dataset))
    # print('#trajectories of test_dataset:', len(test_dataset))

    # generate dataloader
    train_loader = get_loader(config, train_dataset)
    test_loader = get_loader(config, test_dataset)

    # model
    device = th.device(config.device)
    if config.model == 'GPT':
        model = GPT2(config).to(device)
    elif config.model == 'RNN':
        model = RNN(config).to(device)
    elif config.model == 'LSTM':
        model = LSTM(config).to(device)
    elif config.model == 'CVAE' or config.model == 'PolicyValueNet':
        model = CVAE(config).to(device)
    elif config.model == 'ValueNet':
        model = ValueNet(config).to(device)
    else:
        raise Exception(
            f'"{config.model}" is not support!! You should select "GPT", "RNN", "LSTM", "CVAE", "ValueNet", or "PolicyValueNet.'
        )

    # optimizer
    optimizer = th.optim.AdamW(model.parameters(),
                               lr=config.learning_rate,
                               weight_decay=config.weight_decay)

    # learning rate scheduler
    if config.optimizer == 'AdamW':
        scheduler = th.optim.lr_scheduler.LambdaLR(
            optimizer, lambda step: min((step + 1) / config.warmup_step, 1))
    elif config.optimizer == 'AdamWR':
        scheduler = CosineAnnealingWarmUpRestarts(optimizer=optimizer,
                                                  T_0=config.T_0,
                                                  T_mult=config.T_mult,
                                                  eta_max=config.lr_max,
                                                  T_up=config.warmup_step,
                                                  gamma=config.lr_mult)
    else:
        raise Exception(
            f'"{config.optimizer}" is not support!! You should select "AdamW" or "AdamWR".'
        )

    # Metric
    # |TODO| implement Chamfer distance
    if config.model == 'CVAE':
        loss_fn = ELBOLoss(config)
        eval_fn = ELBOLoss(config)
    elif config.model == 'ValueNet':
        loss_fn = RegressionLossValue(config)
        eval_fn = RegressionLossValue(config)
    elif config.model == 'PolicyValueNet':
        loss_fn = None
        eval_fn = None
    else:
        loss_fn = RegressionLossPolicy(config)
        eval_fn = RegressionLossPolicy(config)

    # Trainer & Evaluator
    trainer = Trainer(config=config,
                      loader=train_loader,
                      model=model,
                      optimizer=optimizer,
                      scheduler=scheduler,
                      loss_fn=loss_fn,
                      eval_fn=eval_fn)
    evaluator = Evaluator(config=config,
                          loader=test_loader,
                          model=model,
                          eval_fn=eval_fn)

    # save configuration
    config.save(model_dir + '/config.yaml')
    # Logging model graph
    dummy = next(iter(test_loader))
    for k in dummy:
        dummy[k].to(device).detach()
    logger.add_graph(ModelAsTuple(config, model), dummy)

    start_epoch = 1
    best_error = 10000.

    # load checkpoint for resuming
    if config.resume is not None:
        filename = os.path.join(model_dir, config.resume)
        if os.path.isfile(filename):
            start_epoch, best_error, model, optimizer, scheduler = load_checkpoint(
                config, filename, model, optimizer, scheduler)
            start_epoch += 1
            print("Loaded checkpoint '{}' (epoch {})".format(
                config.resume, start_epoch))
        else:
            raise Exception("No checkpoint found at '{}'".format(
                config.resume))

    # load checkpoint for pre-trained
    if config.pre_trained is not None:
        pre_trained_path = os.path.join(config.exp_dir, config.pre_trained)
        if os.path.isfile(pre_trained_path):
            start_epoch, best_error, model, optimizer, scheduler = load_checkpoint(
                config, pre_trained_path, model, optimizer, scheduler)
            start_epoch = 1
            print("Loaded checkpoint '{}'".format(config.pre_trained))
        else:
            raise Exception("No checkpoint found at '{}'".format(
                config.resume))

    for epoch in range(start_epoch, config.epochs + 1):
        print(f'===== Start {epoch} epoch =====')

        # Training one epoch
        print("Training...")
        train_loss, train_val = trainer.train(epoch)

        # Logging
        if config.model == 'CVAE':
            logger.add_scalar('Loss(total)/train', train_loss['total'], epoch)
            logger.add_scalar('Loss(Reconstruction)/train',
                              train_loss['Recon'], epoch)
            logger.add_scalar('Loss(KL_divergence)/train',
                              train_loss['KL_div'], epoch)
        elif config.model == 'ValueNet':
            logger.add_scalar('Loss/train', train_loss['total'], epoch)
        elif config.model == 'PolicyValueNet':
            logger.add_scalar('Loss(total)/train', train_loss['total'], epoch)
            logger.add_scalar('Loss(action)/train', train_loss['action'],
                              epoch)
            logger.add_scalar('Loss(accumulated reward)/train',
                              train_loss['accumulated_reward'], epoch)
            # logger.add_scalar('Eval(action)/train', train_val['action'], epoch)
        else:
            logger.add_scalar('Loss(total)/train', train_loss['total'], epoch)
            logger.add_scalar('Loss(action)/train', train_loss['action'],
                              epoch)
            # if config.use_reward:
            #     logger.add_scalar('Loss(reward)/train', train_loss['reward'], epoch)

            # logger.add_scalar('Eval(action)/train', train_val['action'], epoch)
            # if config.use_reward:
            #     logger.add_scalar('Eval(reward)/train', train_val['reward'], epoch)

        # |FIXME| debug for eff_grad: "RuntimeError: Boolean value of Tensor with more than one value is ambiguous"
        log_gradients(model,
                      logger,
                      epoch,
                      log_grad=config.log_grad,
                      log_param=config.log_para,
                      eff_grad=config.eff_grad,
                      print_num_para=config.print_num_para)

        # evaluating
        if epoch % config.test_eval_freq == 0:
            print("Validating...")
            test_val = evaluator.eval(epoch)

            # save the best model
            # |TODO| change 'action' to 'total' @ trainer.py & evaluator.py -> merge 'CVAE' & others
            if config.model == 'CVAE' or config.model == 'ValueNet' or config.model == 'PolicyValueNet':
                if test_val['total'] < best_error:
                    best_error = test_val['total']

                    save_checkpoint('Saving the best model!',
                                    os.path.join(model_dir, 'best.pth'), epoch,
                                    best_error, model, optimizer, scheduler)
            else:
                if test_val['action'] < best_error:
                    best_error = test_val['action']

                    save_checkpoint('Saving the best model!',
                                    os.path.join(model_dir, 'best.pth'), epoch,
                                    best_error, model, optimizer, scheduler)

            # Logging
            if config.model == 'CVAE':
                logger.add_scalar('Eval(total)/test', test_val['total'], epoch)
                logger.add_scalar('Eval(Reconstruction)/test',
                                  test_val['Recon'], epoch)
                logger.add_scalar('Eval(KL_divergence)/test',
                                  test_val['KL_div'], epoch)
            elif config.model == 'ValueNet':
                logger.add_scalar('Eval/test', test_val['total'], epoch)
            elif config.model == 'PolicyValueNet':
                logger.add_scalar('Eval(total)/test', test_val['total'], epoch)
                logger.add_scalar('Eval(action)/test', test_val['action'],
                                  epoch)
                logger.add_scalar('Eval(accumulated reward)/test',
                                  test_val['accumulated_reward'], epoch)
            else:
                logger.add_scalar('Eval(action)/test', test_val['action'],
                                  epoch)
                # if config.use_reward:
                #     logger.add_scalar('Eval(reward)/test', test_val['reward'], epoch)

        # save the model
        if epoch % config.save_freq == 0:
            save_checkpoint('Saving...',
                            os.path.join(model_dir, f'ckpt_epoch_{epoch}.pth'),
                            epoch, best_error, model, optimizer, scheduler)

        print(f'===== End {epoch} epoch =====')
Пример #30
0
    for i in range(predictions.shape[0]):
        plt.subplot(4, 4, i + 1)
        plt.imshow(predictions[i, :, :, 0], cmap='gray')
        plt.axis('off')
    file_dir = './image/'+ dire
    if not os.path.exists(file_dir):
        os.makedirs(file_dir)
    plt.savefig(file_dir +'/image_at_epoch_{:04d}.png'.format(degree))
    plt.close()

def generate_images(model, data):
    fig = plt.figure(figsize=(4, 4))
    for i in range(data.shape[0]):
        plt.subplot(4, 4, i + 1)
        plt.imshow(data[i, :, :, 0], cmap='gray')
        plt.axis('off')
    plt.show()

for i in range(1, 6):
    model = CVAE(latent_dim=16, beta=i)
    checkpoint = tf.train.Checkpoint(model=model)
    checkpoint.restore("checkpoints/2_20method" + str(i) + "/ckpt-10")
    mean, logvar = model.encode(test_sample)
    r_m = np.identity(model.latent_dim)
    z = model.reparameterize(mean, logvar)
    theta = np.radians(60)
    c, s = np.cos(theta), np.sin(theta)
    r_m[0, [0, 1]], r_m[1, [0, 1]] = [c, s], [-s, c]
    rota_z = matvec(tf.cast(r_m, dtype=tf.float32), z)
    phi_z = model.decode(rota_z)
    generate_and_save_images(phi_z, 1, 'test3' + "/beta_test" + str(i))