fp = Fingerprints() fp.dxs = fp_dx fp.dys = fp_target from model import CW2_Net as Net #from res_model import ResNet as Net from models import * print("Train using model", Net) model = Net() if args.cuda: model.cuda() optimizer = optim.SGD(model.parameters(), lr=args.lr, weight_decay=1e-6, momentum=args.momentum) print("Args:", args) val_losses=[] for epoch in range(1, args.epochs + 1): if(epoch==1): test_loss = fp_train.test(epoch, args, model, test_loader, fp.dxs, fp.dys, test_length=0.1*len(valid_dataset)) fp_train.train(epoch, args, model, optimizer, train_loader, fp.dxs, fp.dys) test_loss = fp_train.test(epoch, args, model, test_loader, fp.dxs, fp.dys, test_length=0.1*len(valid_dataset)) val_losses.append(test_loss) loss_flag = 1 #for i in range(2,5): # if(epoch<=15 or val_losses[-1]<val_losses[-i]): # loss_flag = 1
fp = Fingerprints() fp.dxs = fp_dx fp.dys = fp_target from model import CW2_Net as Net #from res_model import ResNet as Net from models import * print("Train using model", Net) model = Net() if args.cuda: model.cuda() optimizer = optim.SGD(model.parameters(), lr=args.lr, weight_decay=1e-6, momentum=args.momentum) print("Args:", args) val_losses = [] for epoch in range(1, args.epochs + 1): if (epoch == 1): test_loss = fp_train.test(epoch, args, model, test_loader, fp.dxs, fp.dys,