Пример #1
0
def run_training():
    image_files = glob.glob(os.path.join(config.DATA_DIR, '*.png'))
    targets_orig = [x.split('/')[-1][:-4] for x in image_files]
    targets = [[c for c in x] for x in targets_orig]
    targets_flat = [c for clist in targets for c in clist]

    label_enc = preprocessing.LabelEncoder()
    label_enc.fit(targets_flat)
    targets_enc = [label_enc.transform(x) for x in targets]
    targets_enc = np.array(targets_enc) + 1

    train_imgs, test_imgs, train_targets, test_targets, train_orig_targets, test_orig_targets = model_selection.train_test_split(
        image_files, targets_enc, targets_orig, test_size=0.1, random_state=42)

    train_dataset = dataset.Classification(image_paths=train_imgs,
                                           targets=train_targets,
                                           resize=(config.IMAGE_HEIGHT,
                                                   config.IMAGE_WIDTH))

    train_loader = torch.utils.data.DataLoader(train_dataset,
                                               batch_size=config.BATCH_SIZE,
                                               shuffle=True)

    test_dataset = dataset.Classification(image_paths=test_imgs,
                                          targets=test_targets,
                                          resize=(config.IMAGE_HEIGHT,
                                                  config.IMAGE_WIDTH))

    test_loader = torch.utils.data.DataLoader(test_dataset,
                                              batch_size=config.BATCH_SIZE,
                                              shuffle=False)

    model = CaptchaModel(num_chars=len(label_enc.classes_))
    model = model.to(config.DEVICE)

    optimizer = torch.optim.Adam(model.parameters(), lr=3e-4)
    scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer,
                                                           factor=0.8,
                                                           patience=5,
                                                           verbose=True)

    for epoch in range(config.EPOCHS):
        train_loss = engine.train(model, train_loader, optimizer)
        val_preds, valid_loss = engine.eval(model, test_loader)
        print(
            f"Epoch: {epoch}: Train loss: {train_loss},  Valid loss: {valid_loss}"
        )
        valid_cap_preds = []
        for vp in val_preds:
            current_preds = decode_predictions(vp, label_enc)
            valid_cap_preds.extend(current_preds)
        print(list(zip(test_orig_targets, valid_cap_preds))[6:11])
Пример #2
0
def evaluate():
    files = []
    for img_ext in config.ALLOWED_EXTENSIONS:
        files.extend(
            glob(
                os.path.join(config.IMAGES_UPLOADED_PATH,
                             "*.{}".format(img_ext))))
    files.sort(key=os.path.getctime, reverse=True)
    test_img = files[:1]

    test_dataset = dataset.ClassificationDataset(image_paths=test_img,
                                                 resize=(config.IMAGE_HEIGHT,
                                                         config.IMAGE_WIDTH))
    test_loader = DataLoader(
        test_dataset,
        batch_size=1,
        num_workers=0,
    )

    model = CaptchaModel(num_chars=len(lbl_enc.classes_))
    model.to(config.DEVICE)

    model.load_state_dict(
        load('./checkpoints/captcha_v1/captcha_v1.pth',
             map_location=config.DEVICE))
    model.eval()

    for data in test_loader:
        data["images"] = data["images"].to(config.DEVICE)
        prediction, _ = model(data["images"])
        prediction_output = decode_predictions(prediction, lbl_enc)
        return prediction_output
Пример #3
0
def predict(captcha,
            model_dir='./model/model-latest.pkl',
            use_gpu=True,
            mode='captcha'):
    """

  :param captcha:
  :param model_dir:
  :param use_gpu:
  :param mode:
  :return:
  """
    gpu_available = torch.cuda.is_available()

    if mode == 'captcha':
        from model import CaptchaModel
    elif mode == 'kaptcha':
        from kaptcha_model import CaptchaModel
    else:
        return
    model = CaptchaModel()

    if use_gpu and gpu_available:
        model_state = torch.load(model_dir)
    else:
        model_state = torch.load(model_dir,
                                 map_location=lambda storage, loc: storage)

    model.load_state_dict(model_state['network'])

    if use_gpu and gpu_available:
        model = model.cuda()
    else:
        model = model.cpu()

    transformer = Compose(ToTensor())

    img_pil = Image.open(captcha)
    img_tensor = transformer.transforms(img_pil)

    model.eval()
    x = torch.stack([img_tensor])
    if use_gpu and gpu_available:
        x = x.cuda()
    pred1, pred2, pred3, pred4 = model(x)

    pred_seq = [
        torch.argmax(pred1).item(),
        torch.argmax(pred2).item(),
        torch.argmax(pred3).item(),
        torch.argmax(pred4).item()
    ]
    pred_seq = [item + 1 for item in pred_seq]

    _, id2label = get_dict()

    res = ''.join([id2label[i] for i in pred_seq])

    return res
Пример #4
0
def run_training():
    image_files = glob.glob(
        os.path.abspath(os.path.join(config.DATA_DIR, "*.png")))
    labels = [list(x.split("/")[-1].split(".")[0]) for x in image_files]
    labels_flat = [c for x in labels for c in x]

    label_enc = preprocessing.LabelEncoder()
    label_enc.fit(labels_flat)
    tar_enc = np.array([label_enc.transform(x) for x in labels]) + 1
    train_X, test_X, train_y, test_y, train_target, test_target = model_selection.train_test_split(
        image_files, tar_enc, labels)

    train_dataset = dataset.DataSet(train_X,
                                    train_y,
                                    resize=(config.IMG_HEIGHT,
                                            config.IMG_WIDTH))

    test_dataset = dataset.DataSet(test_X,
                                   test_y,
                                   resize=(config.IMG_HEIGHT,
                                           config.IMG_WIDTH))

    train_dataloader = torch.utils.data.DataLoader(
        train_dataset,
        batch_size=config.BATCH_SIZE,
        num_workers=config.NUM_WORKERS,
        shuffle=True)

    test_dataloader = torch.utils.data.DataLoader(
        test_dataset,
        batch_size=config.BATCH_SIZE,
        num_workers=config.NUM_WORKERS)

    cm = CaptchaModel(num_chars=len(label_enc.classes_))
    cm.to(config.DEVICE)

    optimizer = torch.optim.Adam(cm.parameters(), lr=3e-5)
    scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer,
                                                           factor=0.8,
                                                           patience=10,
                                                           verbose=True)

    for epoch in range(config.EPOCHS):

        train_loss = engine.train_fn(cm, train_dataloader, optimizer)
Пример #5
0
def run_training():
    image_files = glob.glob(os.path.join(config.DATA_DIR,"*.png"))
    # path to the dataset
    targets_orig = [x.split('/')[-1][:-4] for x in image_files]
    targets = [[c for c in x] for x in targets_orig]
    targets_flat = [c for clist in targets for c in clist]
    lbl_enc = preprocessing.LabelEncoder()
    lbl_enc.fit(targets_flat)
    targets_enc = [lbl_enc.transform(x) for x in targets]
    targets_enc = np.array(targets_enc) + 1
    # print(targets)
    # print(target_enc)
    # print(len(lbl_enc.classes_))
    # # print(targets_orig)
    # for i, item in enumerate(lbl_enc.classes_):
    #     print(item, '-->', i)

    train_imgs, test_imgs, train_targets, test_targets, train_orig_targets, test_orig_targets= model_selection.train_test_split(image_files, targets_enc, targets_orig, test_size = 0.1, random_state= 42)

    train_dataset = dataset.ClassificationDataset(image_paths = train_imgs, targets =  train_targets, resize = (config.IMAGE_HEIGHT, config.IMAGE_WIDTH))
    print(train_dataset[0])
    train_loader = torch.utils.data.DataLoader(
                train_dataset,
                batch_size = config.BATCH_SIZE,
                num_workers = config.NUM_WORKERS,
                shuffle = True
        )


    test_dataset = dataset.ClassificationDataset(image_paths = test_imgs, targets =  test_targets, resize = (config.IMAGE_HEIGHT, config.IMAGE_WIDTH))
    test_loader = torch.utils.data.DataLoader(
                test_dataset,
                batch_size = config.BATCH_SIZE,
                num_workers = config.NUM_WORKERS,
                shuffle = False
        )
    model = CaptchaModel(num_chars = len(lbl_enc.classes_))
    model.to(config.DEVICE)
    optimizer = torch.optim.Adam(model.parameters(), lr = 3e-4)
    scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, factor =0.8, patience= 5, verbose= True)
    for epoch in range(config.EPOCHS):
        train_loss = engine.train_fn(model, train_loader, optimizer)
        valid_pred, valid_loss = engine.eval_fn(model, train_loader)
Пример #6
0
def load():
    img_files = glob.glob(os.path.join(config.data_dir, "*.png"))
    labels_orig = [x.split('/')[-1][:-4] for x in img_files]
    labels = [[char for char in x] for x in labels_orig]  # all len 5
    lab_flat = [char for clist in labels for char in clist]
    encoder = LabelEncoder()
    encoder.fit_transform(lab_flat)
    targets_enc = [encoder.transform(x) for x in labels]
    targets_enc = np.array(targets_enc) + 1

    train_imgs, test_imgs, train_lab, test_lab, train_orig_lab, test_orig_lab = train_test_split(
        img_files, targets_enc, labels_orig, test_size=0.1)

    train_ds = dataset.Classification(train_imgs,
                                      targets=train_lab,
                                      resize=(config.h, config.w))

    train_loader = DataLoader(train_ds,
                              shuffle=True,
                              batch_size=config.batch_size,
                              num_workers=config.workers)

    test_ds = dataset.Classification(test_imgs,
                                     targets=test_lab,
                                     resize=(config.h, config.w))
    test_loader = DataLoader(test_ds,
                             shuffle=False,
                             batch_size=config.batch_size,
                             num_workers=config.workers)

    model = CaptchaModel(len(encoder.classes_)).to(config.device)
    optimizer = Adam(model.parameters())
    sched = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer,
                                                       factor=0.8,
                                                       patience=5,
                                                       verbose=True)
    for epoch in range(10):
        train_loss = utils.train(model, train_loader, optimizer)
        valid_pred, valid_loss = utils.eval(model, train_loader)
        print(
            f"Epoch: {epoch}, train_loss: {train_loss}, val_loss: {valid_loss}"
        )
Пример #7
0
def get_predictions(image_path, model_path):
    classes = [
        '2', '3', '4', '5', '6', '7', '8', 'b', 'c', 'd', 'e', 'f', 'g', 'm',
        'n', 'p', 'w', 'x', 'y'
    ]
    le = preprocessing.LabelEncoder()
    le.fit(sorted(classes))
    n_classes = len(classes)

    model = CaptchaModel(num_chars=n_classes)
    model.load_state_dict(torch.load(model_path))
    model.eval()

    data = preproc_image(image_path)

    with torch.no_grad():
        preds, _ = model(**data)

    # Now decode the preds
    preds = decode_predictions(preds, le)
    preds = remove_blanks(preds)
    print(preds)
Пример #8
0
def run_training():
    image_files = glob.glob(os.path.join(config.DATA_DIR, "*.png"))

    targets_orig = [x.split("\\")[-1][:-4] for x in image_files]

    targets = [[y for y in x] for x in targets_orig]

    targets_flat = [c for clist in targets for c in clist]

    label_enc = preprocessing.LabelEncoder()
    label_enc.fit(targets_flat)
    targets_enc = [label_enc.transform(x) for x in targets]
    targets_enc = np.array(targets_enc) + 1
    # print(targets_enc)
    # print(label_enc.classes_)

    (
        train_imgs,
        test_imgs,
        train_targets,
        test_targets,
        train_orig_targets,
        test_orig_targets,
    ) = model_selection.train_test_split(image_files,
                                         targets_enc,
                                         targets_orig,
                                         test_size=0.1,
                                         random_state=42)

    train_dataset = dataset.ClassificationDataset(
        image_paths=train_imgs,
        targets=train_targets,
        resize=(config.IMAGE_HEIGHT, config.IMAGE_WIDTH),
    )

    train_loader = torch.utils.data.DataLoader(train_dataset,
                                               batch_size=config.BATCH_SIZE,
                                               num_workers=config.NUM_WORKERS,
                                               shuffle=True,
                                               pin_memory=True)

    test_dataset = dataset.ClassificationDataset(
        image_paths=test_imgs,
        targets=test_targets,
        resize=(config.IMAGE_HEIGHT, config.IMAGE_WIDTH),
    )

    test_loader = torch.utils.data.DataLoader(test_dataset,
                                              batch_size=config.BATCH_SIZE,
                                              num_workers=config.NUM_WORKERS,
                                              shuffle=False,
                                              pin_memory=True)

    model = CaptchaModel(num_chars=len(label_enc.classes_)).cuda()
    model.to(torch.device(config.DEVICE))

    optimizer = torch.optim.Adam(model.parameters(), lr=3e-4)
    scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer,
                                                           factor=0.8,
                                                           patience=5,
                                                           verbose=True)

    for epoch in range(config.EPOCHS):
        train_loss = engine.train_fn(model, train_loader, optimizer)
        valid_preds, valid_loss = engine.eval_fn(model, test_loader)
        valid_cap_preds = []
        for vp in valid_preds:
            current_preds = decode_predictions(vp, label_enc)
            valid_cap_preds.extend(current_preds)
        pprint.pprint(list(zip(test_orig_targets, valid_cap_preds))[:10])
        test_dup_rem = [remove_duplicates(c) for c in test_orig_targets]
        accuracy = metrics.accuracy_score(test_dup_rem, valid_cap_preds)
        print(
            f"EPOCH: {epoch}.train_loss:{train_loss},valid_loss:{valid_loss}, Accuracy={accuracy}"
        )
        scheduler.step(valid_loss)
Пример #9
0
def run_training():
    image_files = glob.glob(os.path.join(config.DATA_DIR, "*.png"))
    # "/../../azopekr.png"
    targets_orig = [x.split("/")[-1][:4] for x in image_files]
    # abcde -> [a, b, c, d, e]
    """
    targets 
    ['6', 'd', 'm', 'x'],
    ['c', '7', '5', '3'],
    ['g', 'g', 'd', '7'],
    ['x', 'e', 'm', 'y'],
    ['6', 'g', '4', '5'],
    ['p', '2', 'x', '7'],
    ['d', 'y', 'p', '7'],
    ['6', 'e', 'c', 'b'],
    ['3', 'm', 'x', 'd'],
    ['f', 'c', 'm', 'e'],
    ['8', 'n', '6', '2'],
    """
    targets = [[c for c in x] for x in targets_orig]
    """
    targets_flat
    ['e',
     '2',
     'd',
     '6',
     'f',
     'w',
     '3',
     'b',
     'n',
     ...
    ]
    """
    targets_flat = [c for clist in targets for c in clist]

    lbl_enc = preprocessing.LabelEncoder()
    lbl_enc.fit(targets_flat)
    targets_enc = [lbl_enc.transform(x) for x in targets]
    # I added one because 0 is kept for unknown
    targets_enc = np.array(targets_enc) + 1
    print(targets_enc)
    print(len(lbl_enc.classes_))

    train_imgs, test_imgs, train_targets, test_targets, _, test_orig_targets = model_selection.train_test_split(
        image_files, targets_enc, targets_orig, test_size=0.1, random_state=42)

    train_dataset = dataset.ClassificationDataset(image_paths=train_imgs,
                                                  targets=train_targets,
                                                  resize=(config.IMAGE_HEIGHT,
                                                          config.IMAGE_WIDTH))
    train_loader = torch.utils.data.DataLoader(train_dataset,
                                               batch_size=config.BATCH_SIZE,
                                               num_workers=config.NUM_WORKERS,
                                               shuffle=True)

    test_dataset = dataset.ClassificationDataset(image_paths=test_imgs,
                                                 targets=test_targets,
                                                 resize=(config.IMAGE_HEIGHT,
                                                         config.IMAGE_WIDTH))
    test_loader = torch.utils.data.DataLoader(test_dataset,
                                              batch_size=config.BATCH_SIZE,
                                              num_workers=config.NUM_WORKERS,
                                              shuffle=False)

    model = CaptchaModel(num_chars=len(lbl_enc.classes_))
    model.to(config.DEVICE)

    optimizer = torch.optim.Adam(model.parameters(), lr=3e-4)
    scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer,
                                                           factor=0,
                                                           patience=5,
                                                           verbose=True)
    for epoch in range(config.EPOCHS):
        train_loss = engine.train_fn(model, train_loader, optimizer)
        valid_preds, valid_loss = engine.eval_fn(model, test_loader)
        valid_cap_preds = []
        for vp in valid_preds:
            current_preds = decode_predictions(vp, lbl_enc)
            valid_cap_preds.extend(current_preds)
        print(list(zip(test_orig_targets, valid_cap_preds))[6:11])
        print(
            f"Epoch: {epoch}, train_loss={train_loss}, valid_loss={valid_loss}"
        )
Пример #10
0
def run_training():
    image_files = glob.glob(os.path.join(config.DATA_DIR, "*.png"))
    targets_orig = [x.split("/")[-1][:-4].split('_')[0] for x in image_files]
    targets = [[c for c in x] for x in targets_orig]
    targets_flat = [c for clist in targets for c in clist]

    lbl_enc = preprocessing.LabelEncoder()
    lbl_enc.fit(targets_flat)
    np.save(config.LABEL_ENCODER_SAVE_PATH, lbl_enc.classes_)
    targets_enc = [lbl_enc.transform(x) for x in targets]
    # print(targets_enc)
    # new_targets_enc= []
    # for i,target in enumerate(targets_enc):
    #   tmp = np.array([-1,-1,-1,-1,-1])
    #   for idx, item in enumerate(target):
    #     # print(idx)
    #     # print('i',i)
    #     tmp[idx] = item
    #     # print(image_files[i])
    #   new_targets_enc.append(tmp)
    # print(new_targets_enc)
    targets_enc = np.array(targets_enc)
    targets_enc = targets_enc + 1

    (
        train_imgs,
        test_imgs,
        train_targets,
        test_targets,
        _,
        test_targets_orig,
    ) = model_selection.train_test_split(
        image_files, targets_enc, targets_orig, test_size=0.1, random_state=42
    )

    train_dataset = dataset.ClassificationDataset(
        image_paths=train_imgs,
        targets=train_targets,
        resize=(config.IMAGE_HEIGHT, config.IMAGE_WIDTH),
    )
    train_loader = torch.utils.data.DataLoader(
        train_dataset,
        batch_size=config.BATCH_SIZE,
        num_workers=config.NUM_WORKERS,
        shuffle=True,
    )
    test_dataset = dataset.ClassificationDataset(
        image_paths=test_imgs,
        targets=test_targets,
        resize=(config.IMAGE_HEIGHT, config.IMAGE_WIDTH),
    )
    test_loader = torch.utils.data.DataLoader(
        test_dataset,
        batch_size=config.BATCH_SIZE,
        num_workers=config.NUM_WORKERS,
        shuffle=False,
    )

    model = CaptchaModel(num_chars=len(lbl_enc.classes_))
    model.to(config.DEVICE)

    optimizer = torch.optim.Adam(model.parameters(), lr=3e-4)
    scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
        optimizer, factor=0.8, patience=5, verbose=True
    )
    for epoch in range(config.EPOCHS):
        train_loss = engine.train_fn(model, train_loader, optimizer)
        valid_preds, test_loss = engine.eval_fn(model, test_loader)
        valid_captcha_preds = []
        for vp in valid_preds:
            current_preds = decode_predictions(vp, lbl_enc)
            valid_captcha_preds.extend(current_preds)
        combined = list(zip(test_targets_orig, valid_captcha_preds))
        print(combined[:10])
        test_dup_rem = test_targets_orig
        accuracy = metrics.accuracy_score(test_dup_rem, valid_captcha_preds)
        print(
            f"Epoch={epoch}, Train Loss={train_loss}, Test Loss={test_loss} Accuracy={accuracy}"
        )
        scheduler.step(test_loss)
        torch.save(model.state_dict(), config.MODEL_SAVE_PATH)
Пример #11
0
def run_training():
    # Create pathlib.Path for the data
    data_path = Path(config.data_dir)
    image_files = list(data_path.glob("*.png"))
    targets = []
    targets_orig = []
    targets_unique = set()

    # Loop through each file and create target list
    for file in data_path.iterdir():
        targets_orig.append(file.stem)                      # append the filename
        targets.append(list(file.stem))                     # append the list of chars
        targets_unique.update(list(file.stem))              # keep track of unique chars

    msg = "Number of target data-points: {}, \nUnique chars: {} \n"
    print(msg.format(len(targets), sorted(targets_unique)))

    # Label encode
    le = preprocessing.LabelEncoder()
    le.fit(sorted(targets_unique))
    targets_encoded = [le.transform(x) for x in targets]
    targets_encoded = np.array(targets_encoded) + 1         # adding 1 because 0 represents "unkwown"

    msg = "Encoded targets: \n{}"
    print(msg.format(targets_encoded))

    # Split the dataset
    train_images, test_images, train_targets, test_targets, train_orig_targets, test_orig_targets = \
        model_selection.train_test_split(
            image_files, targets_encoded, targets_orig, test_size=0.1, random_state=42
        )

    train_dataset = dataset.ClassificationDataset(image_paths=train_images,
                                                  targets=train_targets,
                                                  resize=(config.image_height, config.image_width))

    train_loader = torch.utils.data.DataLoader(
        train_dataset,
        batch_size=config.batch_size,
        num_workers=config.num_workers,
        shuffle=True
    )

    test_dataset = dataset.ClassificationDataset(image_paths=test_images,
                                                 targets=test_targets,
                                                 resize=(config.image_height, config.image_width))

    test_loader = torch.utils.data.DataLoader(
        test_dataset,
        batch_size=config.batch_size,
        num_workers=config.num_workers,
        shuffle=False
    )

    # Create instance of the model and assign to gpu
    model = CaptchaModel(num_chars=len(le.classes_))
    # model.to(config.device)
    model.cuda()

    optimizer = torch.optim.Adam(model.parameters(), lr=3e-4)
    scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
        optimizer, factor=0.8, patience=5, verbose=True
    )

    prev_val_loss = sys.maxsize
    for epoch in range(config.epochs):
        # Train the model over all train batches
        train_loss = train(model, train_loader, optimizer)

        # Test the model over test batches
        val_preds, val_loss = eval(model, test_loader)

        # Print out the actual label and predicted labels
        # Loop through and pass each batch to the decode function
        val_preds_tmp = []
        for vp in val_preds:
            vp = decode_predictions(vp, le)
            val_preds_tmp.extend(vp)
        val_preds = val_preds_tmp

        # Print out the first 5 predictions for the test set each epoch
        print(f"Epoch: {epoch+1}, Train loss: {train_loss}, Val loss: {val_loss}")
        pprint(list(zip(test_orig_targets, val_preds))[:5])

        # Save the model if val_loss decreased
        if val_loss <= prev_val_loss:
            print(f"Val loss decreased from {prev_val_loss} to {val_loss}. Saving model.")
            torch.save(model.state_dict(), Path(config.output_dir)/'captcha_model.pkl')
            prev_val_loss = val_loss

        print("\n\n")
Пример #12
0
def run_training():
    image_files = glob.glob(os.path.join(config.DATA_DIR, "*.png"))

    # "/../../sdfrt.png" the next line only select the name of the file: sdfrt
    targets_orig = [x.split("/")[-1][:-4] for x in image_files]

    # sdfrt -> [s, d, f, r, t]
    targets = [[c for c in x] for x in targets_orig]

    targets_flat = [c for clist in targets for c in clist]

    lbl_enc = preprocessing.LabelEncoder()
    lbl_enc.fit(targets_flat)

    # Encode the targets
    targets_enc = [lbl_enc.transform(x) for x in targets]

    # Transform targets_enc to np.array
    # The labels are encoded from 0 to N-1 where N is the number of labels
    # we want to keep 0 to unknown so add 1
    targets_enc = np.array(targets_enc) + 1

    print(targets)
    print(np.unique(targets_flat))
    print(targets_enc)
    print(len(lbl_enc.classes_))

    # split in train, test for: imgs, targets, orig_targets
    train_imgs, test_imgs, train_targets, test_targets, _, test_orig_targets = \
        model_selection.train_test_split(image_files,
                                         targets_enc, targets_orig,
                                         test_size=0.1, random_state=42)

    train_dataset = dataset.ClassificationDataset(image_paths=train_imgs, targets=train_targets,
                                                  resize=(config.IMAGE_HEIGHT, config.IMAGE_WIDTH))

    train_loader = torch.utils.data.DataLoader(
        train_dataset,
        batch_size=config.BATCH_SIZE,
        num_workers=config.NUM_WORKERS,
        shuffle=True
    )

    test_dataset = dataset.ClassificationDataset(image_paths=test_imgs, targets=test_targets,
                                                 resize=(config.IMAGE_HEIGHT, config.IMAGE_WIDTH))

    test_loader = torch.utils.data.DataLoader(
        test_dataset,
        batch_size=config.BATCH_SIZE,
        num_workers=config.NUM_WORKERS,
        shuffle=False,
    )

    model = CaptchaModel(num_chars=len(lbl_enc.classes_))
    model.to(config.DEVICE)

    optimizer = torch.optim.Adam(model.parameters(), lr=3e-4)
    scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
        optimizer, factor=0.8, patience=5, verbose=True
    )

    for epoch in range(config.EPOCHS):
        train_loss = engine.train_fn(model, train_loader, optimizer)
        valid_preds, valid_loss = engine.train_fn(model, test_loader)

        valid_cap_preds = []
        for valid_pred in valid_preds:
            current_preds = decode_predictions(valid_pred, lbl_enc)
            valid_cap_preds.extend(current_preds)

        pprint(list(zip(test_orig_targets, valid_cap_preds))[6:10])
        print(f"Epoch: {epoch}, train_loss={train_loss}, valid_loss={valid_loss}")
Пример #13
0
def run_training():
    image_files = glob.glob(os.path.join(config.DATA_DIR, "*.png"))
    targets_orig = [
        os.path.splitext(os.path.basename(i))[0] for i in image_files
    ]

    targets = [[c for c in i] for i in targets_orig]
    targets_flat = functools.reduce(operator.iconcat, targets, [])
    # [j for i in targets for j in i ]
    lbl_enc = preprocessing.LabelEncoder()
    lbl_enc.fit(targets_flat)
    target_enc = [lbl_enc.transform(i) for i in targets]
    target_enc = np.array(target_enc) + 1

    train_images, test_images, train_targets, test_targets, train_orig_targets, test_orig_targets = model_selection.train_test_split(
        image_files, target_enc, targets_orig, test_size=0.1, random_state=42)
    # print(train_images[0], test_images[0], train_targets[0], test_targets[0], train_orig_targets[0], test_orig_targets[0])

    train_data = CaptchaImageDataset(image_paths=train_images,
                                     targets=train_targets,
                                     resize=(config.IMAGE_HEIGHT,
                                             config.IMAGE_WIDTH))

    train_loader = data.DataLoader(train_data,
                                   batch_size=config.BATCH_SIZE,
                                   num_workers=config.NUM_WORKERS,
                                   shuffle=True)

    test_data = CaptchaImageDataset(image_paths=test_images,
                                    targets=test_targets,
                                    resize=(config.IMAGE_HEIGHT,
                                            config.IMAGE_WIDTH))
    test_loader = data.DataLoader(test_data,
                                  batch_size=config.BATCH_SIZE,
                                  num_workers=config.NUM_WORKERS,
                                  shuffle=False)

    model = CaptchaModel(num_chars=len(lbl_enc.classes_))
    model.to(config.DEVICE)

    optimizer = torch.optim.Adam(model.parameters(), lr=3e-4)
    scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer,
                                                           factor=0.8,
                                                           patience=5,
                                                           verbose=True)
    print('done')

    losses = []
    accuracy_scores = []
    best_loss = 1e10
    best_accuracy = 0
    for epoch in range(config.EPOCHS):
        train_loss = engine.train_fn(model, train_loader, optimizer)
        test_prediction, test_loss = engine.eval_fn(model, test_loader)

        # print(test_prediction,test_loss)

        #     print(type(test_prediction[0]))
        test_cap_prediction = []
        for kk in test_prediction:
            current_prediction = decode_predictions(kk, lbl_enc)
            # print(current_prediction[0])
            test_cap_prediction.extend(current_prediction)
        # print(test_cap_prediction)
        combined = list(zip(test_orig_targets, test_cap_prediction))
        # print(combined[:10])
        test_dup_rem = [remove_duplicates(c) for c in test_orig_targets]
        # print(test_dup_rem)
        accuracy = metrics.accuracy_score(test_dup_rem, test_cap_prediction)
        accuracy_scores.append(accuracy)
        losses.append(test_loss)
        if best_loss > test_loss:
            best_loss = test_loss
            best_accuracy = accuracy
            checkpoint = {
                'epoch': epoch + 1,
                'best_loss': test_loss,
                'state_dict': model.state_dict(),
                'optimizer': optimizer.state_dict()
            }
            save_ckp(checkpoint, True, config.checkpoint_path,
                     config.best_model_path)
            print('Saving Best Model')
        print(
            f"Epoch: {epoch},   train_loss:{train_loss},  test_loss:{test_loss},   Accuracy={accuracy}"
        )
        scheduler.step(test_loss)

    print(
        f"Accuracy of Model is {best_accuracy}  and Test Loss is {best_loss,}")
    fig = plt.figure()
    ax = plt.axes()

    ax.plot(accuracy_scores, label='Accuracy Scores')
    plt.show()

    fig = plt.figure()
    ax = plt.axes()
    ax.plot(losses, label='Loss Values')
    plt.show()
Пример #14
0
def eval(model_dir,
         data_dir,
         batch_size=64,
         log_dir='./logs',
         use_gpu=True,
         mode='captcha'):
    """
  :param model_dir: 
  :param data_dir:
  :param batch_size:
  :param log_dir:
  :param use_gpu:
  :param mode:
  :return: 
  """
    x_test, y_test = get_data_split(data_dir, modes=['test'])
    if mode == 'captcha':
        from model import CaptchaModel
    elif mode == 'kaptcha':
        from kaptcha_model import CaptchaModel
    model = CaptchaModel()

    gpu_available = torch.cuda.is_available()

    if use_gpu and gpu_available:
        model = model.cuda()
        model_state = torch.load(model_dir)
    else:
        model_state = torch.load(model_dir,
                                 map_location=lambda storage, loc: storage)

    model.load_state_dict(model_state['network'])

    test_ds = CaptchaLoader((x_test, y_test), shuffle=True)

    test_loader = DataLoader(test_ds, batch_size=batch_size, shuffle=True)

    model.eval()

    acc_history = []
    with tqdm(total=int(np.ceil(len(test_loader.dataset) / batch_size)),
              desc='Eval') as eval_bar:
        for _, (x, y) in enumerate(test_loader):
            x = torch.tensor(x, requires_grad=False)
            y = torch.tensor(y, requires_grad=False)

            if use_gpu and gpu_available:
                x = x.cuda()
                y = y.cuda()

            pred1, pred2, pred3, pred4 = model(x)
            acc_mean = np.mean([
                acc(pred1, y[:, 0]),
                acc(pred2, y[:, 1]),
                acc(pred3, y[:, 2]),
                acc(pred4, y[:, 3])
            ])

            pred = torch.stack((pred1, pred2, pred3, pred4), dim=-1)
            multi_acc_mean = multi_acc(torch.argmax(pred, dim=1), y)

            acc_history.append([acc_mean.item(), multi_acc_mean])

            eval_bar.update()
            eval_bar.set_postfix(acc=acc_mean, multi_acc=multi_acc_mean)

    if not os.path.exists(log_dir):
        os.mkdir(log_dir)
    with open(os.path.join(log_dir, 'eval.json'), mode=r'w') as out_fp:
        json.dump(acc_history, out_fp)
Пример #15
0
def run_training():
    image_files = glob.glob(os.path.join(config.DATA_DIR, "*.png"))
    image_files = image_files[:10]
    print(f"Number of Images Found: {len(image_files)}")
    # "../xywz.png" -> "xywz"
    targets_orig = [x.split("/")[-1].split(".")[0] for x in image_files]
    # separate the targets on character level
    targets = [[char for char in x] for x in targets_orig]
    targets_flat = [c for clist in targets for c in clist]

    lbl_encoder = preprocessing.LabelEncoder()
    lbl_encoder.fit(targets_flat)
    targets_enc = [lbl_encoder.transform(x) for x in targets]
    # label encodes from 0, so add 1 to start from 1: 0 will be saved for unknown
    targets_enc = np.array(targets_enc) + 1

    print(f"Number of Unique Classes: {len(lbl_encoder.classes_)}")

    train_imgs, test_imgs, train_targets, test_targets, train_orig_targets, test_orig_targets = \
        model_selection.train_test_split(image_files, targets_enc, targets_orig, test_size=0.1, random_state=42)

    train_dataset = dataset.ClassificationDataset(image_paths=train_imgs,
                                                  targets=train_targets,
                                                  resize=(config.IMAGE_HEIGHT,
                                                          config.IMAGE_WIDTH))
    train_loader = torch.utils.data.DataLoader(train_dataset,
                                               batch_size=config.BATCH_SIZE,
                                               num_workers=config.NUM_WORKERS,
                                               shuffle=True)

    test_dataset = dataset.ClassificationDataset(image_paths=test_imgs,
                                                 targets=test_targets,
                                                 resize=(config.IMAGE_HEIGHT,
                                                         config.IMAGE_WIDTH))
    test_loader = torch.utils.data.DataLoader(test_dataset,
                                              batch_size=config.BATCH_SIZE,
                                              num_workers=config.NUM_WORKERS,
                                              shuffle=False)

    model = CaptchaModel(num_chars=len(lbl_encoder.classes_))
    model.to(config.DEVICE)

    optimizer = torch.optim.Adam(model.parameters(), lr=3e-4)
    scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer,
                                                           factor=0.8,
                                                           patience=5,
                                                           verbose=True)

    train_loss_data = []
    test_loss_data = []
    for epoch in range(config.EPOCHS):
        train_loss = engine.train_fn(model,
                                     train_loader,
                                     optimizer,
                                     save_model=True)
        eval_preds, test_loss = engine.eval_fn(model, test_loader)

        eval_captcha_preds = []
        for vp in eval_preds:
            current_preds = decode_predictions(vp, lbl_encoder)
            eval_captcha_preds.extend(current_preds)

        combined = list(zip(test_orig_targets, eval_captcha_preds))

        pprint(combined[:10])
        test_dup_rem = [remove_duplicates(c) for c in test_orig_targets]
        accuracy = metrics.accuracy_score(test_dup_rem, eval_captcha_preds)
        print(
            f"Epoch={epoch}, Train Loss={train_loss}, Test Loss={test_loss} Accuracy={accuracy}"
        )
        scheduler.step(test_loss)
        train_loss_data.append(train_loss)
        test_loss_data.append(test_loss)

    # print(train_dataset[0])
    plot_loss(train_loss_data, test_loss_data, plot_path=config.PLOT_PATH)
    print("done")