Пример #1
0
    def build_models(self):
        # ###################encoders######################################## #

        image_encoder = CNN_ENCODER(cfg.TEXT.EMBEDDING_DIM)
        image_encoder.train()

        # #######################generator and discriminators############## #
        netsD = []
        if cfg.GAN.B_DCGAN:
            if cfg.TREE.BRANCH_NUM == 1:
                from model import D_NET64 as D_NET
            elif cfg.TREE.BRANCH_NUM == 2:
                from model import D_NET128 as D_NET
            else:  # cfg.TREE.BRANCH_NUM == 3:
                from model import D_NET256 as D_NET
            # TODO: elif cfg.TREE.BRANCH_NUM > 3:
            netG = G_DCGAN()
            netsD = [D_NET(b_jcu=False)]
        else:
            from model import D_NET64, D_NET128, D_NET256
            netG = G_NET()
            if cfg.TREE.BRANCH_NUM > 0:
                netsD.append(D_NET64())
            if cfg.TREE.BRANCH_NUM > 1:
                netsD.append(D_NET128())
            if cfg.TREE.BRANCH_NUM > 2:
                netsD.append(D_NET256())
            # TODO: if cfg.TREE.BRANCH_NUM > 3:
        netG.apply(weights_init)
        # print(netG)
        for i in range(len(netsD)):
            netsD[i].apply(weights_init)
            # print(netsD[i])
        print('# of netsD', len(netsD))
        #
        epoch = 0

        if cfg.PRETRAINED_CNN:
            image_encoder_params = torch.load(
                cfg.PRETRAINED_CNN, map_location=lambda storage, loc: storage)
            image_encoder.load_state_dict(image_encoder_params)

        if cfg.PRETRAINED_G != '':
            state_dict = torch.load(cfg.PRETRAINED_G,
                                    map_location=lambda storage, loc: storage)
            netG.load_state_dict(state_dict)
            print('Load G from: ', cfg.PRETRAINED_G)
            if cfg.TRAIN.B_NET_D:
                Gname = cfg.PRETRAINED_G
                s_tmp = Gname[:Gname.rfind('/')]
                for i in range(len(netsD)):
                    Dname = '%s/netD%d.pth' % (
                        s_tmp, i
                    )  # the name of Ds should be consistent and differ from each other in i
                    print('Load D from: ', Dname)
                    state_dict = torch.load(
                        Dname, map_location=lambda storage, loc: storage)
                    netsD[i].load_state_dict(state_dict)
        # ########################################################### #
        if cfg.CUDA:
            image_encoder = image_encoder.cuda()
            netG.cuda()
            for i in range(len(netsD)):
                netsD[i].cuda()
        return [image_encoder, netG, netsD, epoch]
Пример #2
0
    def build_models(self):
        # ###################encoders######################################## #
        if cfg.TRAIN.NET_E == '':
            print('Error: no pretrained text-image encoders')
            return

        image_encoder = CNN_ENCODER(cfg.TEXT.EMBEDDING_DIM)
        img_encoder_path = cfg.TRAIN.NET_E.replace('text_encoder',
                                                   'image_encoder')
        state_dict = \
            torch.load(img_encoder_path, map_location=lambda storage, loc: storage)
        image_encoder.load_state_dict(state_dict)
        for p in image_encoder.parameters():
            p.requires_grad = False
        print('Load image encoder from:', img_encoder_path)
        image_encoder.eval()

        text_encoder = \
            RNN_ENCODER(self.n_words, nhidden=cfg.TEXT.EMBEDDING_DIM)
        state_dict = \
            torch.load(cfg.TRAIN.NET_E,
                       map_location=lambda storage, loc: storage)
        text_encoder.load_state_dict(state_dict)
        for p in text_encoder.parameters():
            p.requires_grad = False
        print('Load text encoder from:', cfg.TRAIN.NET_E)
        text_encoder.eval()

        # #######################generator and discriminators############## #
        netsD = []
        if cfg.GAN.B_DCGAN:
            if cfg.TREE.BRANCH_NUM == 1:
                from model import D_NET64 as D_NET
            elif cfg.TREE.BRANCH_NUM == 2:
                from model import D_NET128 as D_NET
            else:  # cfg.TREE.BRANCH_NUM == 3:
                from model import D_NET256 as D_NET
            # TODO: elif cfg.TREE.BRANCH_NUM > 3:
            netG = G_DCGAN()
            netsD = [D_NET(b_jcu=False)]
        else:
            from model import D_NET64, D_NET128, D_NET256
            netG = G_NET()
            if cfg.TREE.BRANCH_NUM > 0:
                netsD.append(D_NET64())
            if cfg.TREE.BRANCH_NUM > 1:
                netsD.append(D_NET128())
            if cfg.TREE.BRANCH_NUM > 2:
                netsD.append(D_NET256())
            # TODO: if cfg.TREE.BRANCH_NUM > 3:
        netG.apply(weights_init)
        # print(netG)
        for i in range(len(netsD)):
            netsD[i].apply(weights_init)
            # print(netsD[i])
        print('# of netsD', len(netsD))
        #
        epoch = 0
        if cfg.TRAIN.NET_G != '':
            state_dict = \
                torch.load(cfg.TRAIN.NET_G, map_location=lambda storage, loc: storage)
            netG.load_state_dict(state_dict)
            print('Load G from: ', cfg.TRAIN.NET_G)
            istart = cfg.TRAIN.NET_G.rfind('_') + 1
            iend = cfg.TRAIN.NET_G.rfind('.')
            epoch = cfg.TRAIN.NET_G[istart:iend]
            epoch = int(epoch) + 1
            if cfg.TRAIN.B_NET_D:
                Gname = cfg.TRAIN.NET_G
                for i in range(len(netsD)):
                    s_tmp = Gname[:Gname.rfind('/')]
                    Dname = '%s/netD%d.pth' % (s_tmp, i)
                    print('Load D from: ', Dname)
                    state_dict = \
                        torch.load(Dname, map_location=lambda storage, loc: storage)
                    netsD[i].load_state_dict(state_dict)
        # ########################################################### #
        if cfg.CUDA:
            text_encoder = text_encoder.cuda()
            image_encoder = image_encoder.cuda()
            netG.cuda()
            for i in range(len(netsD)):
                netsD[i].cuda()
        return [text_encoder, image_encoder, netG, netsD, epoch]
Пример #3
0
    def build_models(self):
        # ################### models ######################################## #
        if cfg.TRAIN.NET_E == '':
            print('Error: no pretrained text-image encoders')
            return
        if cfg.TRAIN.NET_G == '':
            print('Error: no pretrained main module')
            return

        VGG = VGGNet()

        for p in VGG.parameters():
            p.requires_grad = False

        print("Load the VGG model")
        VGG.eval()

        image_encoder = CNN_ENCODER(cfg.TEXT.EMBEDDING_DIM)
        img_encoder_path = cfg.TRAIN.NET_E.replace('text_encoder',
                                                   'image_encoder')
        state_dict = \
            torch.load(img_encoder_path, map_location=lambda storage, loc: storage)
        image_encoder.load_state_dict(state_dict)
        for p in image_encoder.parameters():
            p.requires_grad = False
        print('Load image encoder from:', img_encoder_path)
        image_encoder.eval()

        text_encoder = \
            RNN_ENCODER(self.n_words, nhidden=cfg.TEXT.EMBEDDING_DIM)
        state_dict = \
            torch.load(cfg.TRAIN.NET_E,
                       map_location=lambda storage, loc: storage)
        text_encoder.load_state_dict(state_dict)
        for p in text_encoder.parameters():
            p.requires_grad = False
        print('Load text encoder from:', cfg.TRAIN.NET_E)
        text_encoder.eval()

        if cfg.GAN.B_DCGAN:
            netG = G_DCGAN()
            from model import D_NET256 as D_NET
            netD = D_NET(b_jcu=False)
        else:
            from model import D_NET256
            netG = G_NET()
            netD = D_NET256()

        netD.apply(weights_init)

        state_dict = \
            torch.load(cfg.TRAIN.NET_G, map_location=lambda storage, loc: storage)
        netG.load_state_dict(state_dict)
        netG.eval()
        print('Load G from: ', cfg.TRAIN.NET_G)

        epoch = 0
        netDCM = DCM_Net()
        if cfg.TRAIN.NET_C != '':
            state_dict = \
                torch.load(cfg.TRAIN.NET_C, map_location=lambda storage, loc: storage)
            netDCM.load_state_dict(state_dict)
            print('Load DCM from: ', cfg.TRAIN.NET_C)
            istart = cfg.TRAIN.NET_C.rfind('_') + 1
            iend = cfg.TRAIN.NET_C.rfind('.')
            epoch = cfg.TRAIN.NET_C[istart:iend]
            epoch = int(epoch) + 1

        if cfg.TRAIN.NET_D != '':
            state_dict = \
                torch.load(cfg.TRAIN.NET_D, map_location=lambda storage, loc: storage)
            netD.load_state_dict(state_dict)
            print('Load DCM Discriminator from: ', cfg.TRAIN.NET_D)

        if cfg.CUDA:
            text_encoder = text_encoder.cuda()
            image_encoder = image_encoder.cuda()
            netG.cuda()
            netDCM.cuda()
            VGG = VGG.cuda()
            netD.cuda()
        return [text_encoder, image_encoder, netG, netD, epoch, VGG, netDCM]
Пример #4
0
    def build_models(self):
        # ###################encoders######################################## #
        if cfg.TRAIN.NET_E == '':
            raise FileNotFoundError(
                'No pretrained text encoder found in directory DAMSMencoders/. \n'
                +
                'Please train the DAMSM first before training the GAN (see README for details).'
            )

        image_encoder = CNN_ENCODER(cfg.TEXT.EMBEDDING_DIM)
        img_encoder_path = cfg.TRAIN.NET_E.replace('text_encoder',
                                                   'image_encoder')
        state_dict = \
            torch.load(img_encoder_path, map_location=lambda storage, loc: storage)
        image_encoder.load_state_dict(state_dict)
        for p in image_encoder.parameters():
            p.requires_grad = False
        print('Load image encoder from:', img_encoder_path)
        image_encoder.eval()

        if self.text_encoder_type == 'rnn':
            text_encoder = \
                RNN_ENCODER(self.n_words, nhidden=cfg.TEXT.EMBEDDING_DIM)
        elif self.text_encoder_type == 'transformer':
            text_encoder = GPT2Model.from_pretrained(TRANSFORMER_ENCODER)
        state_dict = \
            torch.load(cfg.TRAIN.NET_E,
                       map_location=lambda storage, loc: storage)
        text_encoder.load_state_dict(state_dict)
        for p in text_encoder.parameters():
            p.requires_grad = False
        print('Load text encoder from:', cfg.TRAIN.NET_E)
        text_encoder.eval()

        # #######################generator and discriminators############## #
        netsD = []
        if cfg.GAN.B_DCGAN:
            if cfg.TREE.BRANCH_NUM == 1:
                from model import D_NET64 as D_NET
            elif cfg.TREE.BRANCH_NUM == 2:
                from model import D_NET128 as D_NET
            else:  # cfg.TREE.BRANCH_NUM == 3:
                from model import D_NET256 as D_NET
            # TODO: elif cfg.TREE.BRANCH_NUM > 3:
            netG = G_DCGAN()
            netsD = [D_NET(b_jcu=False)]
        elif cfg.GAN.B_STYLEGEN:
            netG = G_NET_STYLED()
            if cfg.GAN.B_STYLEDISC:
                from model import D_NET_STYLED64, D_NET_STYLED128, D_NET_STYLED256
                if cfg.TREE.BRANCH_NUM > 0:
                    netsD.append(D_NET_STYLED64())
                if cfg.TREE.BRANCH_NUM > 1:
                    netsD.append(D_NET_STYLED128())
                if cfg.TREE.BRANCH_NUM > 2:
                    netsD.append(D_NET_STYLED256())
                # TODO: if cfg.TREE.BRANCH_NUM > 3:
            else:
                from model import D_NET64, D_NET128, D_NET256
                if cfg.TREE.BRANCH_NUM > 0:
                    netsD.append(D_NET64())
                if cfg.TREE.BRANCH_NUM > 1:
                    netsD.append(D_NET128())
                if cfg.TREE.BRANCH_NUM > 2:
                    netsD.append(D_NET256())
                # TODO: if cfg.TREE.BRANCH_NUM > 3:
        else:
            from model import D_NET64, D_NET128, D_NET256
            netG = G_NET()
            if cfg.TREE.BRANCH_NUM > 0:
                netsD.append(D_NET64())
            if cfg.TREE.BRANCH_NUM > 1:
                netsD.append(D_NET128())
            if cfg.TREE.BRANCH_NUM > 2:
                netsD.append(D_NET256())
            # TODO: if cfg.TREE.BRANCH_NUM > 3:
            netG.apply(weights_init)
            # print(netG)
            for i in range(len(netsD)):
                netsD[i].apply(weights_init)
                # print(netsD[i])
        print(netG.__class__)
        for i in netsD:
            print(i.__class__)
        print('# of netsD', len(netsD))
        #
        epoch = 0
        if cfg.TRAIN.NET_G != '':
            state_dict = torch.load(cfg.TRAIN.NET_G,
                                    map_location=lambda storage, loc: storage)
            if cfg.GAN.B_STYLEGEN:
                netG.w_ewma = state_dict['w_ewma']
                if cfg.CUDA:
                    netG.w_ewma = netG.w_ewma.to('cuda:' + str(cfg.GPU_ID))
                netG.load_state_dict(state_dict['netG_state_dict'])
            else:
                netG.load_state_dict(state_dict)
            print('Load G from: ', cfg.TRAIN.NET_G)
            istart = cfg.TRAIN.NET_G.rfind('_') + 1
            iend = cfg.TRAIN.NET_G.rfind('.')
            epoch = cfg.TRAIN.NET_G[istart:iend]
            epoch = int(epoch) + 1
            if cfg.TRAIN.B_NET_D:
                Gname = cfg.TRAIN.NET_G
                for i in range(len(netsD)):
                    s_tmp = Gname[:Gname.rfind('/')]
                    Dname = '%s/netD%d.pth' % (s_tmp, i)
                    print('Load D from: ', Dname)
                    state_dict = \
                        torch.load(Dname, map_location=lambda storage, loc: storage)
                    netsD[i].load_state_dict(state_dict)
        # ########################################################### #
        if cfg.CUDA:
            text_encoder = text_encoder.cuda()
            image_encoder = image_encoder.cuda()
            netG.cuda()
            for i in range(len(netsD)):
                netsD[i].cuda()
        return [text_encoder, image_encoder, netG, netsD, epoch]
Пример #5
0
    def build_models(self):
        ################### Text and Image encoders ########################################
        if cfg.TRAIN.NET_E == '':
            print('Error: no pretrained text-image encoders')
            return
        """
        image_encoder = CNN_dummy()
        image_encoder.cuda()
        image_encoder.eval()
        image_encoder = CNN_ENCODER(cfg.TEXT.EMBEDDING_DIM)
        img_encoder_path = cfg.TRAIN.NET_E.replace('text_encoder', 'image_encoder')
        state_dict = \
            torch.load(img_encoder_path, map_location=lambda storage, loc: storage)
        image_encoder.load_state_dict(state_dict)
        for p in image_encoder.parameters():
            p.requires_grad = False
        print('Load image encoder from:', img_encoder_path)
        image_encoder.eval()
        """

        VGG = VGG16()
        VGG.eval()

        text_encoder = \
            RNN_ENCODER(self.n_words, nhidden=cfg.TEXT.EMBEDDING_DIM)
        state_dict = \
            torch.load(cfg.TRAIN.NET_E,
                       map_location=lambda storage, loc: storage)
        text_encoder.load_state_dict(state_dict)
        for p in text_encoder.parameters():
            p.requires_grad = False
        print('Load text encoder from:', cfg.TRAIN.NET_E)
        text_encoder.eval()

        ####################### Generator and Discriminators ##############
        from model import D_NET256
        netD = D_NET256()
        netG = EncDecNet()

        netD.apply(weights_init)
        netG.apply(weights_init)

        #
        epoch = 0
        """
        if cfg.TRAIN.NET_G != '':
            state_dict = \
                torch.load(cfg.TRAIN.NET_G, map_location=lambda storage, loc: storage)
            netG.load_state_dict(state_dict)
            print('Load G from: ', cfg.TRAIN.NET_G)
            istart = cfg.TRAIN.NET_G.rfind('_') + 1
            iend = cfg.TRAIN.NET_G.rfind('.')
            epoch = cfg.TRAIN.NET_G[istart:iend]
            epoch = int(epoch) + 1
            if cfg.TRAIN.B_NET_D:
                Gname = cfg.TRAIN.NET_G
                for i in range(len(netsD)):
                    s_tmp = Gname[:Gname.rfind('/')]
                    Dname = '%s/netD%d.pth' % (s_tmp, i)
                    print('Load D from: ', Dname)
                    state_dict = \
                        torch.load(Dname, map_location=lambda storage, loc: storage)
                    netsD[i].load_state_dict(state_dict)
        """
        # ########################################################### #
        if cfg.CUDA:
            text_encoder = text_encoder.cuda()
            netG.cuda()
            netD.cuda()
            VGG.cuda()
        return [text_encoder, netG, netD, epoch, VGG]
Пример #6
0
    def build_models(self):
        # ###################encoders######################################## #
        if cfg.TRAIN.NET_E == '':
            print('Error: no pretrained text-image encoders')
            return

        image_encoder = CNN_ENCODER(cfg.TEXT.EMBEDDING_DIM)
        img_encoder_path = cfg.TRAIN.NET_E.replace('text_encoder',
                                                   'image_encoder')
        state_dict = \
            torch.load(img_encoder_path, map_location=lambda storage, loc: storage)
        image_encoder.load_state_dict(state_dict)
        for p in image_encoder.parameters():
            p.requires_grad = False
        print('Load image encoder from:', img_encoder_path)
        image_encoder.eval()

        text_encoder = HigherLevelRNN(ninput=cfg.TEXT.EMBEDDING_DIM,
                                      nhidden=cfg.TEXT.EMBEDDING_DIM)
        state_dict = torch.load(cfg.TRAIN.NET_E, map_location=lambda s, l: s)
        text_encoder.load_state_dict(state_dict)

        text_encoder_L = RNN_ENCODER(self.n_words,
                                     nhidden=cfg.TEXT.EMBEDDING_DIM)
        L_path = cfg.TRAIN.NET_E.replace('text_encoder', 'text_encoder_L')
        state_dict = torch.load(L_path, map_location=lambda s, l: s)
        text_encoder_L.load_state_dict(state_dict)
        for p in  itertools.chain(text_encoder.parameters(),\
                                  text_encoder_L.parameters()):
            p.requires_grad = False
        print('Loaded text encoder: %s' % cfg.TRAIN.NET_E)
        print('Loaded low level text encoder: %s' % L_path)
        text_encoder.eval()
        text_encoder_L.eval()

        # #######################generator and discriminators############## #
        netsD = []
        from model import D_NET64, D_NET128, D_NET256
        netG = G_NET()
        if cfg.TREE.BRANCH_NUM > 0:
            netsD.append(D_NET64())
        if cfg.TREE.BRANCH_NUM > 1:
            netsD.append(D_NET128())
        if cfg.TREE.BRANCH_NUM > 2:
            netsD.append(D_NET256())

        netG.apply(weights_init)
        # print(netG)
        for i in range(len(netsD)):
            netsD[i].apply(weights_init)
            # print(netsD[i])
        print('# of netsD', len(netsD))
        epoch = 0

        if self.resume:
            checkpoint_list = sorted(
                [ckpt for ckpt in glob.glob(self.model_dir + "/" + '*.pth')])
            latest_checkpoint = checkpoint_list[-1]
            state_dict = torch.load(latest_checkpoint,
                                    map_location=lambda storage, loc: storage)
            netG.load_state_dict(state_dict["netG"])
            for i in range(len(netsD)):
                netsD[i].load_state_dict(state_dict["netD"][i])
            epoch = int(latest_checkpoint[-8:-4]) + 1
            print("Resuming training from checkpoint {} at epoch {}.".format(
                latest_checkpoint, epoch))

        #
        if cfg.TRAIN.NET_G != '':
            state_dict = \
                torch.load(cfg.TRAIN.NET_G, map_location=lambda storage, loc: storage)
            epoch = state_dict['epoch'] + 1
            netG.load_state_dict(state_dict['netG'])
            for i in range(len(netsD)):
                netsD[i].load_state_dict(state_dict['netD'][i])

            # netG.load_state_dict(state_dict)
            # print('Load G from: ', cfg.TRAIN.NET_G)
            # istart = cfg.TRAIN.NET_G.rfind('_') + 1
            # iend = cfg.TRAIN.NET_G.rfind('.')
            # epoch = cfg.TRAIN.NET_G[istart:iend]
            # epoch = int(epoch) + 1
            # if cfg.TRAIN.B_NET_D:
            #     Gname = cfg.TRAIN.NET_G
            #     for i in range(len(netsD)):
            #         s_tmp = Gname[:Gname.rfind('/')]
            #         Dname = '%s/netD%d.pth' % (s_tmp, i)
            #         print('Load D from: ', Dname)
            #         state_dict = \
            #             torch.load(Dname, map_location=lambda storage, loc: storage)
            #         netsD[i].load_state_dict(state_dict)
        # ########################################################### #
        if cfg.CUDA:
            text_encoder = text_encoder.cuda()
            text_encoder_L = text_encoder_L.cuda()
            image_encoder = image_encoder.cuda()
            netG.cuda()
            for i in range(len(netsD)):
                netsD[i].cuda()
        return [(text_encoder, text_encoder_L), image_encoder, netG, netsD,
                epoch]
Пример #7
0
    def build_models(self):

        ###########
        if cfg.TRAIN.NET_E == '':
            print('Error: no pretrained text-image encoders')
            return
        image_encoder = BERT_CNN_ENCODER_RNN_DECODER(cfg.TEXT.EMBEDDING_DIM,
                                                     cfg.CNN_RNN.HIDDEN_DIM,
                                                     self.n_words,
                                                     rec_unit=cfg.RNN_TYPE)
        img_encoder_path = cfg.TRAIN.NET_E.replace('text_encoder',
                                                   'image_encoder')
        state_dict = \
            torch.load(img_encoder_path, map_location=lambda storage, loc: storage)
        image_encoder.load_state_dict(state_dict)
        for p in image_encoder.parameters():
            p.requires_grad = False
        print('Load image encoder from:', img_encoder_path)
        # image_encoder.eval()

        text_encoder = \
            BERT_RNN_ENCODER(self.n_words, nhidden=cfg.TEXT.EMBEDDING_DIM)
        state_dict = \
            torch.load(cfg.TRAIN.NET_E,
                       map_location=lambda storage, loc: storage)
        text_encoder.load_state_dict(state_dict)
        for p in text_encoder.parameters():
            p.requires_grad = False
        print('Load text encoder from:', cfg.TRAIN.NET_E)
        text_encoder.eval()
        ###########

        # Caption models - cnn_encoder and rnn_decoder
        caption_cnn = CAPTION_CNN(cfg.CAP.embed_size)
        caption_cnn.load_state_dict(
            torch.load(cfg.CAP.caption_cnn_path,
                       map_location=lambda storage, loc: storage))
        for p in caption_cnn.parameters():
            p.requires_grad = False
        print('Load caption model from:', cfg.CAP.caption_cnn_path)
        caption_cnn.eval()

        caption_rnn = CAPTION_RNN(cfg.CAP.embed_size, cfg.CAP.hidden_size * 2,
                                  self.n_words, cfg.CAP.num_layers)
        caption_rnn.load_state_dict(
            torch.load(cfg.CAP.caption_rnn_path,
                       map_location=lambda storage, loc: storage))
        for p in caption_rnn.parameters():
            p.requires_grad = False
        print('Load caption model from:', cfg.CAP.caption_rnn_path)

        # Generator and Discriminator:
        netsD = []
        if cfg.GAN.B_DCGAN:
            if cfg.TREE.BRANCH_NUM == 1:
                from model import D_NET64 as D_NET
            elif cfg.TREE.BRANCH_NUM == 2:
                from model import D_NET128 as D_NET
            else:  # cfg.TREE.BRANCH_NUM == 3:
                from model import D_NET256 as D_NET

            netG = G_DCGAN()
            netsD = [D_NET(b_jcu=False)]
        else:
            from model import D_NET64, D_NET128, D_NET256
            netG = G_NET()
            if cfg.TREE.BRANCH_NUM > 0:
                netsD.append(D_NET64())
            if cfg.TREE.BRANCH_NUM > 1:
                netsD.append(D_NET128())
            if cfg.TREE.BRANCH_NUM > 2:
                netsD.append(D_NET256())
        netG.apply(weights_init)
        # print(netG)
        for i in range(len(netsD)):
            netsD[i].apply(weights_init)
            # print(netsD[i])
        print('# of netsD', len(netsD))

        epoch = 0
        if cfg.TRAIN.NET_G != '':
            state_dict = \
                torch.load(cfg.TRAIN.NET_G, map_location=lambda storage, loc: storage)
            netG.load_state_dict(state_dict)
            print('Load G from: ', cfg.TRAIN.NET_G)
            istart = cfg.TRAIN.NET_G.rfind('_') + 1
            iend = cfg.TRAIN.NET_G.rfind('.')
            epoch = cfg.TRAIN.NET_G[istart:iend]
            epoch = int(epoch) + 1
            if cfg.TRAIN.B_NET_D:
                Gname = cfg.TRAIN.NET_G
                for i in range(len(netsD)):
                    s_tmp = Gname[:Gname.rfind('/')]
                    Dname = '%s/netD%d.pth' % (s_tmp, i)
                    print('Load D from: ', Dname)
                    state_dict = \
                        torch.load(Dname, map_location=lambda storage, loc: storage)
                    netsD[i].load_state_dict(state_dict)

        if cfg.CUDA:
            text_encoder = text_encoder.cuda()
            image_encoder = image_encoder.cuda()
            caption_cnn = caption_cnn.cuda()
            caption_rnn = caption_rnn.cuda()
            netG.cuda()
            for i in range(len(netsD)):
                netsD[i].cuda()
        return [
            text_encoder, image_encoder, caption_cnn, caption_rnn, netG, netsD,
            epoch
        ]
Пример #8
0
    def build_models(self):
        def count_parameters(model):
            total_param = 0
            for name, param in model.named_parameters():
                if param.requires_grad:
                    num_param = np.prod(param.size())
                    if param.dim() > 1:
                        print(name, ':', 'x'.join(str(x) for x in list(param.size())), '=', num_param)
                    else:
                        print(name, ':', num_param)
                    total_param += num_param
            return total_param

        # ###################encoders######################################## #
        if cfg.TRAIN.NET_E == '':
            print('Error: no pretrained text-image encoders')
            return

        image_encoder = CNN_ENCODER(cfg.TEXT.EMBEDDING_DIM)
        img_encoder_path = cfg.TRAIN.NET_E.replace('text_encoder', 'image_encoder')
        state_dict = \
            torch.load(img_encoder_path, map_location=lambda storage, loc: storage)
        image_encoder.load_state_dict(state_dict)
        for p in image_encoder.parameters():
            p.requires_grad = False
        print('Load image encoder from:', img_encoder_path)
        image_encoder.eval()

        text_encoder = \
            RNN_ENCODER(self.n_words, nhidden=cfg.TEXT.EMBEDDING_DIM)
        state_dict = \
            torch.load(cfg.TRAIN.NET_E,
                       map_location=lambda storage, loc: storage)
        text_encoder.load_state_dict(state_dict)
        for p in text_encoder.parameters():
            p.requires_grad = False
        print('Load text encoder from:', cfg.TRAIN.NET_E)
        text_encoder.eval()

        # #######################generator and discriminators############## #
        netsD = []
        if cfg.GAN.B_DCGAN:
            if cfg.TREE.BRANCH_NUM ==1:
                from model import D_NET64 as D_NET
            elif cfg.TREE.BRANCH_NUM == 2:
                from model import D_NET128 as D_NET
            else:  # cfg.TREE.BRANCH_NUM == 3:
                from model import D_NET256 as D_NET
            # TODO: elif cfg.TREE.BRANCH_NUM > 3:
            netG = G_DCGAN()
            netsD = [D_NET(b_jcu=False)]
        else:
            from model import D_NET64, D_NET128, D_NET256
            netG = G_NET()
            if cfg.TREE.BRANCH_NUM > 0:
                netsD.append(D_NET64())
            if cfg.TREE.BRANCH_NUM > 1:
                netsD.append(D_NET128())
            if cfg.TREE.BRANCH_NUM > 2:
                netsD.append(D_NET256())
            # TODO: if cfg.TREE.BRANCH_NUM > 3:

        print('number of trainable parameters =', count_parameters(netG))
        print('number of trainable parameters =', count_parameters(netsD[-1]))

        netG.apply(weights_init)
        # print(netG)
        for i in range(len(netsD)):
            netsD[i].apply(weights_init)
            # print(netsD[i])
        print('# of netsD', len(netsD))
        #
        epoch = 0
        if cfg.TRAIN.NET_G != '':
            state_dict = \
                torch.load(cfg.TRAIN.NET_G, map_location=lambda storage, loc: storage)
            netG.load_state_dict(state_dict)
            print('Load G from: ', cfg.TRAIN.NET_G)
            istart = cfg.TRAIN.NET_G.rfind('_') + 1
            iend = cfg.TRAIN.NET_G.rfind('.')
            epoch = cfg.TRAIN.NET_G[istart:iend]
            epoch = int(epoch) + 1
            if cfg.TRAIN.B_NET_D:
                Gname = cfg.TRAIN.NET_G
                for i in range(len(netsD)):
                    s_tmp = Gname[:Gname.rfind('/')]
                    Dname = '%s/netD%d.pth' % (s_tmp, i)
                    print('Load D from: ', Dname)
                    state_dict = \
                        torch.load(Dname, map_location=lambda storage, loc: storage)
                    netsD[i].load_state_dict(state_dict)
        # ########################################################### #
        
        # Create a target network.
        target_netG = deepcopy(netG)
                    
        if cfg.CUDA:
            text_encoder = text_encoder.cuda()
            image_encoder = image_encoder.cuda()
            netG.cuda()
            
            # The target network is stored on the scondary GPU.---------------------------------
            target_netG.cuda() 
            #target_netG.ca_net.device = secondary_device
            #-----------------------------------------------------------------------------------

            for i in range(len(netsD)):
                netsD[i].cuda()
                
        # Disable training in the target network:
        for p in target_netG.parameters():
            p.requires_grad = False  
            
        return [text_encoder, image_encoder, netG, target_netG, netsD, epoch]
Пример #9
0
    def build_models(self):
        print('Building models...')
        print('N_words: ', self.n_words)

        #####################
        ##  TEXT ENCODERS  ##
        #####################
        if cfg.TRAIN.NET_E == '':
            print('Error: no pretrained text-image encoders')
            return

        image_encoder = CNN_ENCODER(cfg.TEXT.EMBEDDING_DIM)
        img_encoder_path = cfg.TRAIN.NET_E.replace('text_encoder',
                                                   'image_encoder')
        state_dict = \
            torch.load(img_encoder_path, map_location=lambda storage, loc: storage)
        image_encoder.load_state_dict(state_dict)
        print('Built image encoder: ', image_encoder)
        for p in image_encoder.parameters():
            p.requires_grad = False
        print('Load image encoder from:', img_encoder_path)
        image_encoder.eval()

        text_encoder = \
            RNN_ENCODER(self.n_words, nhidden=cfg.TEXT.EMBEDDING_DIM)
        state_dict = \
            torch.load(cfg.TRAIN.NET_E,
                       map_location=lambda storage, loc: storage)
        text_encoder.load_state_dict(state_dict)
        print('Built text encoder: ', text_encoder)
        for p in text_encoder.parameters():
            p.requires_grad = False
        print('Load text encoder from:', cfg.TRAIN.NET_E)
        text_encoder.eval()

        ######################
        ##  CAPTION MODELS  ##
        ######################

        # cnn_encoder and rnn_encoder
        if cfg.CAP.USE_ORIGINAL:
            caption_cnn = CAPTION_CNN(embed_size=cfg.TEXT.EMBEDDING_DIM)
            caption_rnn = CAPTION_RNN(embed_size=cfg.TEXT.EMBEDDING_DIM,
                                      hidden_size=cfg.CAP.HIDDEN_SIZE,
                                      vocab_size=self.n_words,
                                      num_layers=cfg.CAP.NUM_LAYERS)
        else:
            caption_cnn = Encoder()
            caption_rnn = Decoder(idx2word=self.ixtoword)

        caption_cnn_checkpoint = torch.load(
            cfg.CAP.CAPTION_CNN_PATH,
            map_location=lambda storage, loc: storage)
        caption_rnn_checkpoint = torch.load(
            cfg.CAP.CAPTION_RNN_PATH,
            map_location=lambda storage, loc: storage)
        caption_cnn.load_state_dict(caption_cnn_checkpoint['model_state_dict'])
        caption_rnn.load_state_dict(caption_rnn_checkpoint['model_state_dict'])

        for p in caption_cnn.parameters():
            p.requires_grad = False
        print('Load caption model from: ', cfg.CAP.CAPTION_CNN_PATH)
        caption_cnn.eval()

        for p in caption_rnn.parameters():
            p.requires_grad = False
        print('Load caption model from: ', cfg.CAP.CAPTION_RNN_PATH)

        #################################
        ##  GENERATOR & DISCRIMINATOR  ##
        #################################
        netsD = []
        if cfg.GAN.B_DCGAN:
            if cfg.TREE.BRANCH_NUM == 1:
                from model import D_NET64 as D_NET
            elif cfg.TREE.BRANCH_NUM == 2:
                from model import D_NET128 as D_NET
            else:  # cfg.TREE.BRANCH_NUM == 3:
                from model import D_NET256 as D_NET

            netG = G_DCGAN()
            netsD = [D_NET(b_jcu=False)]
        else:
            from model import D_NET64, D_NET128, D_NET256
            netG = G_NET()
            if cfg.TREE.BRANCH_NUM > 0:
                netsD.append(D_NET64())
            if cfg.TREE.BRANCH_NUM > 1:
                netsD.append(D_NET128())
            if cfg.TREE.BRANCH_NUM > 2:
                netsD.append(D_NET256())
        netG.apply(weights_init)
        # print(netG)
        for i in range(len(netsD)):
            netsD[i].apply(weights_init)
            # print(netsD[i])
        print('# of netsD', len(netsD))

        epoch = 0
        if cfg.TRAIN.NET_G != '':
            state_dict = \
                torch.load(cfg.TRAIN.NET_G, map_location=lambda storage, loc: storage)
            netG.load_state_dict(state_dict)
            print('Load G from: ', cfg.TRAIN.NET_G)
            istart = cfg.TRAIN.NET_G.rfind('_') + 1
            iend = cfg.TRAIN.NET_G.rfind('.')
            epoch = cfg.TRAIN.NET_G[istart:iend]
            epoch = int(epoch) + 1
            if cfg.TRAIN.B_NET_D:
                Gname = cfg.TRAIN.NET_G
                for i in range(len(netsD)):
                    s_tmp = Gname[:Gname.rfind('/')]
                    Dname = '%s/netD%d.pth' % (s_tmp, i)
                    print('Load D from: ', Dname)
                    state_dict = \
                        torch.load(Dname, map_location=lambda storage, loc: storage)
                    netsD[i].load_state_dict(state_dict)

        text_encoder = text_encoder.to(cfg.DEVICE)
        image_encoder = image_encoder.to(cfg.DEVICE)
        caption_cnn = caption_cnn.to(cfg.DEVICE)
        caption_rnn = caption_rnn.to(cfg.DEVICE)
        netG.to(cfg.DEVICE)
        for i in range(len(netsD)):
            netsD[i].to(cfg.DEVICE)
        return [
            text_encoder, image_encoder, caption_cnn, caption_rnn, netG, netsD,
            epoch
        ]
Пример #10
0
def load_network(gpus:list, distributed:bool):
    netG = G_NET()
    netG.apply(weights_init)
    if distributed:
        netG = netG.cuda()
        netG = torch.nn.parallel.DistributedDataParallel(netG, device_ids=gpus, output_device=gpus[0], broadcast_buffers=True)
    else:
        if cfg.CUDA:
            netG = netG.cuda()
        netG = torch.nn.DataParallel(netG, device_ids=gpus)
    print(netG)

    netsD = []
    if cfg.TREE.BRANCH_NUM > 0:
        netsD.append(D_NET64())
    if cfg.TREE.BRANCH_NUM > 1:
        netsD.append(D_NET128())
    if cfg.TREE.BRANCH_NUM > 2:
        netsD.append(D_NET256())
    if cfg.TREE.BRANCH_NUM > 3:
        netsD.append(D_NET512())
    if cfg.TREE.BRANCH_NUM > 4:
        netsD.append(D_NET1024())
    # TODO: if cfg.TREE.BRANCH_NUM > 5:
    # netsD_module = nn.ModuleList(netsD)
    # netsD_module.apply(weights_init)
    # netsD_module = torch.nn.parallel.DistributedDataParallel(netsD_module.cuda(), device_ids=gpus, output_device=gpus[0])
    for i in range(len(netsD)):
        netsD[i].apply(weights_init)
        if distributed:
            netsD[i] = torch.nn.parallel.DistributedDataParallel(netsD[i].cuda(), device_ids=gpus, output_device=gpus[0], broadcast_buffers=True
                # , process_group=pg_Ds[i]
                )
        else:
            netsD[i] = torch.nn.DataParallel(netsD[i], device_ids=gpus)
        print(netsD[i])
    print('# of netsD', len(netsD))

    count = 0
    if cfg.TRAIN.NET_G != '':
        state_dict = torch.load(cfg.TRAIN.NET_G, map_location=lambda storage, loc: storage)
        netG.load_state_dict(state_dict)
        print('Load ', cfg.TRAIN.NET_G)

        istart = cfg.TRAIN.NET_G.rfind('_') + 1
        iend = cfg.TRAIN.NET_G.rfind('.')
        count = cfg.TRAIN.NET_G[istart:iend]
        count = int(count) + 1

    if cfg.TRAIN.NET_D != '':
        for i in range(len(netsD)):
            print('Load %s_%d.pth' % (cfg.TRAIN.NET_D, i))
            state_dict = torch.load('%s%d.pth' % (cfg.TRAIN.NET_D, i), map_location=lambda storage, loc: storage)
            netsD[i].load_state_dict(state_dict)

    inception_model = INCEPTION_V3()

    
    if not distributed:
        if cfg.CUDA:
            netG.cuda()
            for i in range(len(netsD)):
                netsD[i].cuda()
            inception_model = inception_model.cuda()
        inception_model = torch.nn.DataParallel(inception_model, device_ids=gpus)
    else:
        inception_model = torch.nn.parallel.DistributedDataParallel(inception_model.cuda(), device_ids=gpus, output_device=gpus[0])
        pass
    # inception_model = inception_model.cpu() #to(torch.device("cuda:{}".format(gpus[0])))
    inception_model.eval()
    print("model device, G:{}, D:{}, incep:{}".format(netG.device_ids, netsD[0].device_ids, inception_model.device_ids))
    return netG, netsD, len(netsD), inception_model, count