Пример #1
0
def main():
    args = ArgsInit().args

    if args.use_gpu:
        device = torch.device("cuda:" + str(args.device)) if torch.cuda.is_available() else torch.device("cpu")
    else:
        device = torch.device("cpu")

    dataset = OGBNDataset(dataset_name=args.dataset)
    args.num_tasks = dataset.num_tasks
    args.nf_path = dataset.extract_node_features(args.aggr)

    evaluator = Evaluator(args.dataset)

    valid_data_list = []

    for i in range(args.num_evals):
        parts = dataset.random_partition_graph(dataset.total_no_of_nodes,
                                               cluster_number=args.valid_cluster_number)
        valid_data = dataset.generate_sub_graphs(parts,
                                                 cluster_number=args.valid_cluster_number)
        valid_data_list.append(valid_data)

    model = DeeperGCN(args)

    model.load_state_dict(torch.load(args.model_load_path)['model_state_dict'])
    model.to(device)
    result = multi_evaluate(valid_data_list, dataset, model, evaluator, device)
    print(result)
    model.print_params(final=True)
Пример #2
0
def main():

    args = ArgsInit().args

    if args.use_gpu:
        device = torch.device("cuda:" +
                              str(args.device)) if torch.cuda.is_available(
                              ) else torch.device("cpu")
    else:
        device = torch.device('cpu')

    dataset = PygGraphPropPredDataset(name=args.dataset)
    args.num_tasks = dataset.num_tasks
    print(args)

    if args.feature == 'full':
        pass
    elif args.feature == 'simple':
        print('using simple feature')
        # only retain the top two node/edge features
        dataset.data.x = dataset.data.x[:, :2]
        dataset.data.edge_attr = dataset.data.edge_attr[:, :2]

    split_idx = dataset.get_idx_split()

    evaluator = Evaluator(args.dataset)

    train_loader = DataLoader(dataset[split_idx["train"]],
                              batch_size=args.batch_size,
                              shuffle=False,
                              num_workers=args.num_workers)
    valid_loader = DataLoader(dataset[split_idx["valid"]],
                              batch_size=args.batch_size,
                              shuffle=False,
                              num_workers=args.num_workers)
    test_loader = DataLoader(dataset[split_idx["test"]],
                             batch_size=args.batch_size,
                             shuffle=False,
                             num_workers=args.num_workers)

    model = DeeperGCN(args)

    model.load_state_dict(torch.load(args.model_load_path)['model_state_dict'])
    model.to(device)

    train_result = eval(model, device, train_loader,
                        evaluator)[dataset.eval_metric]
    valid_result = eval(model, device, valid_loader,
                        evaluator)[dataset.eval_metric]
    test_result = eval(model, device, test_loader,
                       evaluator)[dataset.eval_metric]

    print({
        'Train': train_result,
        'Validation': valid_result,
        'Test': test_result
    })

    model.print_params(final=True)
Пример #3
0
def main():

    args = ArgsInit().args

    if args.use_gpu:
        device = torch.device("cuda:" +
                              str(args.device)) if torch.cuda.is_available(
                              ) else torch.device("cpu")
    else:
        device = torch.device('cpu')

    if args.not_extract_node_feature:
        dataset = PygGraphPropPredDataset(name=args.dataset,
                                          transform=add_zeros)
    else:
        extract_node_feature_func = partial(extract_node_feature,
                                            reduce=args.aggr)
        dataset = PygGraphPropPredDataset(name=args.dataset,
                                          transform=extract_node_feature_func)

    args.num_tasks = dataset.num_classes
    evaluator = Evaluator(args.dataset)

    split_idx = dataset.get_idx_split()

    train_loader = DataLoader(dataset[split_idx["train"]],
                              batch_size=args.batch_size,
                              shuffle=False,
                              num_workers=args.num_workers)
    valid_loader = DataLoader(dataset[split_idx["valid"]],
                              batch_size=args.batch_size,
                              shuffle=False,
                              num_workers=args.num_workers)
    test_loader = DataLoader(dataset[split_idx["test"]],
                             batch_size=args.batch_size,
                             shuffle=False,
                             num_workers=args.num_workers)

    print(args)

    model = DeeperGCN(args)
    model.load_state_dict(torch.load(args.model_load_path)['model_state_dict'])
    model.to(device)

    train_accuracy = eval(model, device, train_loader, evaluator)
    valid_accuracy = eval(model, device, valid_loader, evaluator)
    test_accuracy = eval(model, device, test_loader, evaluator)

    print({
        'Train': train_accuracy,
        'Validation': valid_accuracy,
        'Test': test_accuracy
    })
    model.print_params(final=True)
Пример #4
0
def main():

    args = ArgsInit().args

    if args.use_gpu:
        device = torch.device("cuda:" +
                              str(args.device)) if torch.cuda.is_available(
                              ) else torch.device("cpu")
    else:
        device = torch.device('cpu')

    dataset = PygNodePropPredDataset(name=args.dataset)
    data = dataset[0]
    split_idx = dataset.get_idx_split()

    evaluator = Evaluator(args.dataset)

    x = data.x.to(device)
    y_true = data.y.to(device)

    edge_index = data.edge_index.to(device)
    edge_index = to_undirected(edge_index, data.num_nodes)

    if args.self_loop:
        edge_index = add_self_loops(edge_index, num_nodes=data.num_nodes)[0]

    args.in_channels = data.x.size(-1)
    args.num_tasks = dataset.num_classes

    print(args)

    model = DeeperGCN(args)

    model.load_state_dict(torch.load(args.model_load_path)['model_state_dict'])
    model.to(device)

    result = test(model, x, edge_index, y_true, split_idx, evaluator)
    train_accuracy, valid_accuracy, test_accuracy = result

    print({
        'Train': train_accuracy,
        'Validation': valid_accuracy,
        'Test': test_accuracy
    })

    model.print_params(final=True)
Пример #5
0
def main():

    args = ArgsInit().args

    if args.use_gpu:
        device = torch.device("cuda:" +
                              str(args.device)) if torch.cuda.is_available(
                              ) else torch.device("cpu")
    else:
        device = torch.device('cpu')

    dataset = PygLinkPropPredDataset(name=args.dataset)
    data = dataset[0]
    # Data(edge_index=[2, 2358104], edge_weight=[2358104, 1], edge_year=[2358104, 1], x=[235868, 128])
    split_edge = dataset.get_edge_split()
    evaluator = Evaluator(args.dataset)

    x = data.x.to(device)

    edge_index = data.edge_index.to(device)

    args.in_channels = data.x.size(-1)
    args.num_tasks = 1

    print(args)

    model = DeeperGCN(args).to(device)
    predictor = LinkPredictor(args).to(device)

    model.load_state_dict(torch.load(args.model_load_path)['model_state_dict'])
    model.to(device)

    predictor.load_state_dict(
        torch.load(args.predictor_load_path)['model_state_dict'])
    predictor.to(device)

    hits = ['Hits@10', 'Hits@50', 'Hits@100']

    result = test(model, predictor, x, edge_index, split_edge, evaluator,
                  args.batch_size)

    for k in hits:
        train_result, valid_result, test_result = result[k]
        print('{}--Train: {}, Validation: {}, Test: {}'.format(
            k, train_result, valid_result, test_result))
Пример #6
0
data3.pos = data3.x



#plot_pointcloud(trg_mesh, "Target mesh")
#plot_pointcloud(block1, "Source mesh")
#plt.show()

# We will learn to deform the source mesh by offsetting its vertices
# The shape of the deform parameters is equal to the total number of vertices in src_mesh#
#deform_verts = torch.full(src_mesh.verts_packed().shape, 0.0, device=device, requires_grad=True)
#model = GCN()
print(device)
#TODO: more features
gcn1 = DeeperGCN(3, 128, 3, 12)
gcn1.to(device)
gcn2 = DeeperGCN(128 + 3, 128, 3, 12)
gcn2.to(device)
gcn3 = DeeperGCN(128 + 3, 128, 3, 12)
gcn3.to(device)


# The optimizer
optimizer = torch.optim.Adam(list(gcn1.parameters()) +
                            list(gcn2.parameters()) +
                            list(gcn3.parameters()), lr=0.0001)
#optimizer = torch.optim.SGD([deform_verts], lr=1.0, momentum=0.9)


# Number of optimization steps
Niter = 5001
    ax.set_title(title)
    ax.view_init(190, 30)
    plt.show()


#plot_pointcloud(trg_mesh, "Target mesh")
#plot_pointcloud(src_mesh, "Source mesh")
plt.show()

# We will learn to deform the source mesh by offsetting its vertices
# The shape of the deform parameters is equal to the total number of vertices in src_mesh#
#deform_verts = torch.full(block1.verts_packed().shape, 0.0, device=device, requires_grad=True)
#model = GCN()
#print(device)
model = DeeperGCN(3, 128, 3, 5)
model.to(device)

# The optimizer
optimizer = torch.optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
#optimizer = torch.optim.SGD([deform_verts], lr=0.2, momentum=0.9)

# Number of optimization steps
Niter = 3001
# Weight for the chamfer loss
w_chamfer = 1.0
# Weight for mesh edge loss
w_edge = 0.1  #1.0
# Weight for mesh normal consistency
w_normal = 1.6e-4  #0.01
# Weight for mesh laplacian smoothing
w_laplacian = 0.3  #0.1