Пример #1
0
        
if __name__ == '__main__':

    import argparse
#    from efficientnet_pytorch import EfficientNet

    parser = argparse.ArgumentParser(
        description='Convert TF model to PyTorch model and save for easier future loading')
    parser.add_argument('--model_name', type=str, default='efficientnet-b0',
                        help='efficientnet-b{N}, where N is an integer 0 <= N <= 7')
    parser.add_argument('--pth_file', type=str, default='efficientnet-b0.pth',
                        help='input PyTorch model file name')
    args = parser.parse_args()

    # Build model
    model = EfficientNet.from_name(args.model_name)
                                
    pretrained_weights = torch.load(args.pth_file)
    #    model.load_state_dict(pretrained_weights)#error,key mismatched
#    print(type(pretrained_weights),dir(pretrained_weights))#<class 'collections.OrderedDict'>
#    for key in pretrained_weights.keys():
#        print(key)
    del pretrained_weights['_fc.weight']#delete unuseful weights
    del pretrained_weights['_fc.bias']
#    for key in pretrained_weights.keys():
#        print(key)
    model.load_state_dict(pretrained_weights)
    
#    from torchsummary import summary
#    summary(model.cuda(), input_size=(3, 320, 320))
    
Пример #2
0
    print('*' * 30)
    train_loader = get_loader(osp.join(args.data_path, 'images'),
                              osp.join(args.data_path, 'list_attr_celeba.txt'),
                              crop_size=178,
                              image_size=360,
                              batch_size=args.batch_size,
                              mode='all',
                              num_workers=args.num_workers)
    print('*' * 30)

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    print('Running on device:', device)
    print('*' * 30)

    print('Model Architecture')
    model = EfficientNet.from_name('efficientnet-b4')
    model = model.to(device)
    model_params = torchutils.get_model_param_count(model)
    print(model)
    print('Total model parameters:', model_params)
    print('*' * 30)

    # criterion = nn.BCEWithLogitsLoss()
    criterion = nn.MultiLabelSoftMarginLoss()
    optimizer = optim.SGD(model.parameters(),
                          lr=args.lr,
                          momentum=0.9,
                          weight_decay=args.weight_decay)
    scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer,
                                                     patience=3,
                                                     threshold=0.005,