Пример #1
0
def main(args):

    #create a writer
    writer = SummaryWriter('loss_plot_' + args.mode, comment='test')
    # Create model directory
    if not os.path.exists(args.model_path):
        os.makedirs(args.model_path)

    # Image preprocessing, normalization for the pretrained resnet
    transform = T.Compose([
        T.Resize((224, 224)),
        T.ToTensor(),
        T.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
    ])

    # Load vocabulary wrapper
    with open(args.vocab_path, 'rb') as f:
        vocab = pickle.load(f)

    val_length = len(os.listdir(args.image_dir_val))

    # Build data loader
    data_loader = get_loader(args.image_dir,
                             args.caption_path,
                             vocab,
                             transform,
                             args.batch_size,
                             shuffle=True,
                             num_workers=args.num_workers)

    data_loader_val = get_loader(args.image_dir_val,
                                 args.caption_path_val,
                                 vocab,
                                 transform,
                                 args.batch_size,
                                 shuffle=True,
                                 num_workers=args.num_workers)

    # Build the model
    # if no-attention model is chosen:
    if args.model_type == 'no_attention':
        encoder = Encoder(args.embed_size).to(device)
        decoder = Decoder(args.embed_size, args.hidden_size, len(vocab),
                          args.num_layers).to(device)
        criterion = nn.CrossEntropyLoss()

    # if attention model is chosen:
    elif args.model_type == 'attention':
        encoder = EncoderAtt(encoded_image_size=9).to(device)
        decoder = DecoderAtt(vocab, args.encoder_dim, args.hidden_size,
                             args.attention_dim, args.embed_size,
                             args.dropout_ratio, args.alpha_c).to(device)

    # if transformer model is chosen:
    elif args.model_type == 'transformer':
        model = Transformer(len(vocab), args.embed_size,
                            args.transformer_layers, 8,
                            args.dropout_ratio).to(device)

        encoder_optimizer = torch.optim.Adam(params=filter(
            lambda p: p.requires_grad, model.encoder.parameters()),
                                             lr=args.learning_rate_enc)
        decoder_optimizer = torch.optim.Adam(params=filter(
            lambda p: p.requires_grad, model.decoder.parameters()),
                                             lr=args.learning_rate_dec)
        criterion = nn.CrossEntropyLoss(ignore_index=vocab.word2idx['<pad>'])

    else:
        print('Select model_type attention or no_attention')

    # if model is not transformer: additional step in encoder is needed: freeze lower layers of resnet if args.fine_tune == True
    if args.model_type != 'transformer':
        decoder_optimizer = torch.optim.Adam(params=filter(
            lambda p: p.requires_grad, decoder.parameters()),
                                             lr=args.learning_rate_dec)
        encoder.fine_tune(args.fine_tune)
        encoder_optimizer = torch.optim.Adam(params=filter(
            lambda p: p.requires_grad, encoder.parameters()),
                                             lr=args.learning_rate_enc)

    # initialize lists to store results:
    loss_train = []
    loss_val = []
    loss_val_epoch = []
    loss_train_epoch = []

    bleu_res_list = []
    cider_res_list = []
    rouge_res_list = []

    results = {}

    # calculate total steps fot train and validation
    total_step = len(data_loader)
    total_step_val = len(data_loader_val)

    #For each epoch
    for epoch in tqdm(range(args.num_epochs)):

        loss_val_iter = []
        loss_train_iter = []

        # set model to train mode
        if args.model_type != 'transformer':
            encoder.train()
            decoder.train()
        else:
            model.train()

        # for each entry in data_loader
        for i, (images, captions, lengths) in tqdm(enumerate(data_loader)):
            # load images and captions to device
            images = images.to(device)
            captions = captions.to(device)
            # Forward, backward and optimize

            # forward and backward path is different dependent of model type:
            if args.model_type == 'no_attention':
                # get features from encoder
                features = encoder(images)
                # pad targergets to a length
                targets = pack_padded_sequence(captions,
                                               lengths,
                                               batch_first=True)[0]
                # get output from decoder
                outputs = decoder(features, captions, lengths)
                # calculate loss
                loss = criterion(outputs, targets)

                # optimizer and backward step
                decoder_optimizer.zero_grad()
                decoder_optimizer.zero_grad()
                loss.backward()
                decoder_optimizer.step()
                encoder_optimizer.step()

            elif args.model_type == 'attention':

                # get features from encoder
                features = encoder(images)

                # get targets - starting from 2 word in captions
                #(the model not sequantial, so targets are predicted in parallel- no need to predict first word in captions)

                targets = captions[:, 1:]
                # decode length = length-1 for each caption
                decode_lengths = [length - 1 for length in lengths]
                #flatten targets
                targets = targets.reshape(targets.shape[0] * targets.shape[1])

                sampled_caption = []

                # get scores and alphas from decoder
                scores, alphas = decoder(features, captions, decode_lengths)

                scores = scores.view(-1, scores.shape[-1])

                #predicted = prediction with maximum score
                _, predicted = torch.max(scores, dim=1)

                # calculate loss
                loss = decoder.loss(scores, targets, alphas)

                # optimizer and backward step
                decoder_optimizer.zero_grad()
                decoder_optimizer.zero_grad()
                loss.backward()
                decoder_optimizer.step()
                encoder_optimizer.step()

            elif args.model_type == 'transformer':

                # input is captions without last word
                trg_input = captions[:, :-1]
                # create mask
                trg_mask = create_masks(trg_input)

                # get scores from model
                scores = model(images, trg_input, trg_mask)
                scores = scores.view(-1, scores.shape[-1])

                # get targets - starting from 2 word in captions
                targets = captions[:, 1:]

                #predicted = prediction with maximum score
                _, predicted = torch.max(scores, dim=1)

                # calculate loss
                loss = criterion(
                    scores,
                    targets.reshape(targets.shape[0] * targets.shape[1]))

                #forward and backward path
                decoder_optimizer.zero_grad()
                decoder_optimizer.zero_grad()
                loss.backward()
                decoder_optimizer.step()
                encoder_optimizer.step()

            else:
                print('Select model_type attention or no_attention')

            # append results to loss lists and writer
            loss_train_iter.append(loss.item())
            loss_train.append(loss.item())
            writer.add_scalar('Loss/train/iterations', loss.item(), i + 1)

            # Print log info
            if i % args.log_step == 0:
                print(
                    'Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}, Perplexity: {:5.4f}'
                    .format(epoch, args.num_epochs, i, total_step, loss.item(),
                            np.exp(loss.item())))

        print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}, Perplexity: {:5.4f}'.
              format(epoch, args.num_epochs, i, total_step, loss.item(),
                     np.exp(loss.item())))

        #append mean of last 10 batches as approximate epoch loss
        loss_train_epoch.append(np.mean(loss_train_iter[-10:]))

        writer.add_scalar('Loss/train/epoch', np.mean(loss_train_iter[-10:]),
                          epoch + 1)

        #save model
        if args.model_type != 'transformer':
            torch.save(
                decoder.state_dict(),
                os.path.join(
                    args.model_path,
                    'decoder_' + args.mode + '_{}.ckpt'.format(epoch + 1)))
            torch.save(
                encoder.state_dict(),
                os.path.join(
                    args.model_path,
                    'decoder_' + args.mode + '_{}.ckpt'.format(epoch + 1)))

        else:
            torch.save(
                model.state_dict(),
                os.path.join(
                    args.model_path,
                    'model_' + args.mode + '_{}.ckpt'.format(epoch + 1)))
        np.save(
            os.path.join(args.predict_json,
                         'loss_train_temp_' + args.mode + '.npy'), loss_train)

        #validate model:
        # set model to eval mode:
        if args.model_type != 'transformer':
            encoder.eval()
            decoder.eval()
        else:
            model.eval()
        total_step = len(data_loader_val)

        # set no_grad mode:
        with torch.no_grad():
            # for each entry in data_loader
            for i, (images, captions,
                    lengths) in tqdm(enumerate(data_loader_val)):
                targets = pack_padded_sequence(captions,
                                               lengths,
                                               batch_first=True)[0]
                images = images.to(device)
                captions = captions.to(device)

                # forward and backward path is different dependent of model type:
                if args.model_type == 'no_attention':
                    features = encoder(images)
                    outputs = decoder(features, captions, lengths)
                    loss = criterion(outputs, targets)

                elif args.model_type == 'attention':

                    features = encoder(images)
                    sampled_caption = []
                    targets = captions[:, 1:]
                    decode_lengths = [length - 1 for length in lengths]
                    targets = targets.reshape(targets.shape[0] *
                                              targets.shape[1])

                    scores, alphas = decoder(features, captions,
                                             decode_lengths)

                    _, predicted = torch.max(scores, dim=1)

                    scores = scores.view(-1, scores.shape[-1])

                    sampled_caption = []

                    loss = decoder.loss(scores, targets, alphas)

                elif args.model_type == 'transformer':

                    trg_input = captions[:, :-1]
                    trg_mask = create_masks(trg_input)
                    scores = model(images, trg_input, trg_mask)
                    scores = scores.view(-1, scores.shape[-1])
                    targets = captions[:, 1:]

                    _, predicted = torch.max(scores, dim=1)

                    loss = criterion(
                        scores,
                        targets.reshape(targets.shape[0] * targets.shape[1]))

                #display results
                if i % args.log_step == 0:
                    print(
                        'Epoch [{}/{}], Step [{}/{}], Validation Loss: {:.4f}, Validation Perplexity: {:5.4f}'
                        .format(epoch, args.num_epochs, i, total_step_val,
                                loss.item(), np.exp(loss.item())))

                # append results to loss lists and writer
                loss_val.append(loss.item())
                loss_val_iter.append(loss.item())

                writer.add_scalar('Loss/validation/iterations', loss.item(),
                                  i + 1)

        np.save(
            os.path.join(args.predict_json, 'loss_val_' + args.mode + '.npy'),
            loss_val)

        print(
            'Epoch [{}/{}], Step [{}/{}], Validation Loss: {:.4f}, Validation Perplexity: {:5.4f}'
            .format(epoch, args.num_epochs, i, total_step_val, loss.item(),
                    np.exp(loss.item())))

        # results: epoch validation loss

        loss_val_epoch.append(np.mean(loss_val_iter))
        writer.add_scalar('Loss/validation/epoch', np.mean(loss_val_epoch),
                          epoch + 1)

        #predict captions:
        filenames = os.listdir(args.image_dir_val)

        predicted = {}

        for file in tqdm(filenames):
            if file == '.DS_Store':
                continue
            # Prepare an image
            image = load_image(os.path.join(args.image_dir_val, file),
                               transform)
            image_tensor = image.to(device)

            # Generate caption starting with <start> word

            # procedure is different for each model type
            if args.model_type == 'attention':

                features = encoder(image_tensor)
                sampled_ids, _ = decoder.sample(features)
                sampled_ids = sampled_ids[0].cpu().numpy()
                #start sampled_caption with <start>
                sampled_caption = ['<start>']

            elif args.model_type == 'no_attention':
                features = encoder(image_tensor)
                sampled_ids = decoder.sample(features)
                sampled_ids = sampled_ids[0].cpu().numpy()
                sampled_caption = ['<start>']

            elif args.model_type == 'transformer':

                e_outputs = model.encoder(image_tensor)
                max_seq_length = 20
                sampled_ids = torch.zeros(max_seq_length, dtype=torch.long)
                sampled_ids[0] = torch.LongTensor([[vocab.word2idx['<start>']]
                                                   ]).to(device)

                for i in range(1, max_seq_length):

                    trg_mask = np.triu(np.ones((1, i, i)), k=1).astype('uint8')
                    trg_mask = Variable(
                        torch.from_numpy(trg_mask) == 0).to(device)

                    out = model.decoder(sampled_ids[:i].unsqueeze(0),
                                        e_outputs, trg_mask)

                    out = model.out(out)
                    out = F.softmax(out, dim=-1)
                    val, ix = out[:, -1].data.topk(1)
                    sampled_ids[i] = ix[0][0]

                sampled_ids = sampled_ids.cpu().numpy()
                sampled_caption = []

            # Convert word_ids to words
            for word_id in sampled_ids:
                word = vocab.idx2word[word_id]
                sampled_caption.append(word)
                # break at <end> of the sentence
                if word == '<end>':
                    break
            sentence = ' '.join(sampled_caption)

            predicted[file] = sentence

        # save predictions to json file:
        json.dump(
            predicted,
            open(
                os.path.join(
                    args.predict_json,
                    'predicted_' + args.mode + '_' + str(epoch) + '.json'),
                'w'))

        #validate model
        with open(args.caption_path_val, 'r') as file:
            captions = json.load(file)

        res = {}
        for r in predicted:
            res[r] = [predicted[r].strip('<start> ').strip(' <end>')]

        images = captions['images']
        caps = captions['annotations']
        gts = {}
        for image in images:
            image_id = image['id']
            file_name = image['file_name']
            list_cap = []
            for cap in caps:
                if cap['image_id'] == image_id:
                    list_cap.append(cap['caption'])
            gts[file_name] = list_cap

        #calculate BLUE, CIDER and ROUGE metrics from real and resulting captions
        bleu_res = bleu(gts, res)
        cider_res = cider(gts, res)
        rouge_res = rouge(gts, res)

        # append resuls to result lists
        bleu_res_list.append(bleu_res)
        cider_res_list.append(cider_res)
        rouge_res_list.append(rouge_res)

        # write results to writer
        writer.add_scalar('BLEU1/validation/epoch', bleu_res[0], epoch + 1)
        writer.add_scalar('BLEU2/validation/epoch', bleu_res[1], epoch + 1)
        writer.add_scalar('BLEU3/validation/epoch', bleu_res[2], epoch + 1)
        writer.add_scalar('BLEU4/validation/epoch', bleu_res[3], epoch + 1)
        writer.add_scalar('CIDEr/validation/epoch', cider_res, epoch + 1)
        writer.add_scalar('ROUGE/validation/epoch', rouge_res, epoch + 1)

    results['bleu'] = bleu_res_list
    results['cider'] = cider_res_list
    results['rouge'] = rouge_res_list

    json.dump(
        results,
        open(os.path.join(args.predict_json, 'results_' + args.mode + '.json'),
             'w'))
    np.save(
        os.path.join(args.predict_json, 'loss_train_' + args.mode + '.npy'),
        loss_train)
    np.save(os.path.join(args.predict_json, 'loss_val_' + args.mode + '.npy'),
            loss_val)
Пример #2
0
        print(translate(captions))


with open(vocab_path, 'rb') as f:
    vocab = pickle.load(f)

vocab_size = len(vocab)
print('vocab_size:', vocab_size)

dataloader = get_loader(image_dir,
                        caption_path,
                        vocab,
                        batch_size,
                        crop_size,
                        shuffle=True,
                        num_workers=num_workers)

encoder = Encoder().to(device)
encoder.fine_tune(fine_tune_encoder)
decoder = Decoder(attention_dim, embedding_size, lstm_size,
                  vocab_size).to(device)

print('Start loading models.')
encoder.load_state_dict(torch.load(encoder_path))
decoder.load_state_dict(torch.load(decoder_path))
encoder.eval()
decoder.eval()

sample('data/surf.jpg', vocab, dataloader, encoder, decoder)
sample('data/giraffe.png', vocab, dataloader, encoder, decoder)
Пример #3
0
def train():
    with open(vocab_path, 'rb') as f:
        vocab = pickle.load(f)

    vocab_size = len(vocab)
    print('vocab_size:', vocab_size)

    dataloader = get_loader(image_dir,
                            caption_path,
                            vocab,
                            batch_size,
                            crop_size,
                            shuffle=True,
                            num_workers=num_workers)

    encoder = Encoder().to(device)
    encoder.fine_tune(fine_tune_encoder)
    encoder_optimizer = torch.optim.Adam(
        params=filter(lambda p: p.requires_grad, encoder.parameters()),
        lr=learning_rate) if fine_tune_encoder else None

    decoder = Decoder(attention_dim, embedding_size, lstm_size,
                      vocab_size).to(device)
    decoder_optimizer = torch.optim.Adam(params=filter(
        lambda p: p.requires_grad, decoder.parameters()),
                                         lr=learning_rate)

    if os.path.exists(encoder_path):
        print('Start loading encoder')
        encoder.load_state_dict(torch.load(encoder_path))
    if os.path.exists(decoder_path):
        print('Start loading decoder')
        decoder.load_state_dict(torch.load(decoder_path))

    loss_fn = torch.nn.CrossEntropyLoss().to(device)

    num_steps = len(dataloader)
    for epoch in range(num_epochs):
        for index, (imgs, captions, lengths) in enumerate(dataloader):
            imgs = imgs.to(device)
            captions = captions.to(device)

            features = encoder(imgs)
            #y_predicted, captions_sorted, lengths_sorted, alphas, sorted_idx = decoder(features, captions, lengths)
            y_predicted, captions, lengths, alphas = decoder(
                features, captions, lengths)

            # Since we decoded starting with <start>, the targets are all words after <start>, up to <end>
            targets = captions[:, 1:]
            #targets = torch.zeros(captions.size()).long().to(device)
            #targets[:, :-1] = captions[:, 1:]

            y_predicted, _ = pack_padded_sequence(y_predicted,
                                                  lengths,
                                                  batch_first=True)
            targets, _ = pack_padded_sequence(targets,
                                              lengths,
                                              batch_first=True)

            loss = loss_fn(y_predicted, targets)
            loss += alpha_c * ((1.0 - alphas.sum(dim=1))**2).mean()

            #optimizer.zero_grad()
            if encoder_optimizer is not None:
                encoder_optimizer.zero_grad()
            decoder_optimizer.zero_grad()

            loss.backward()

            #optimizer.step()
            if encoder_optimizer is not None:
                encoder_optimizer.step()
            decoder_optimizer.step()

            if index % log_every == 0:
                print(
                    'Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}, Perplexity: {:5.4f}'
                    .format(epoch, num_epochs, index, num_steps, loss.item(),
                            np.exp(loss.item())))

            if index % save_every == 0 and index != 0:
                print('Start saving encoder')
                torch.save(encoder.state_dict(), encoder_path)
                print('Start saving decoder')
                torch.save(decoder.state_dict(), decoder_path)
Пример #4
0
def main(args):
    """
    Training and validation.
    """

    global best_bleu4, epochs_since_improvement, checkpoint, start_epoch, fine_tune_encoder, data_name, word_map

    with open(args.vocab_path, 'rb') as f:
        word_map = pickle.load(f)

    # Initialize / load checkpoint
    if checkpoint is None:
        decoder = DecoderWithAttention(attention_dim=attention_dim,
                                       embed_dim=emb_dim,
                                       decoder_dim=decoder_dim,
                                       vocab_size=len(word_map),
                                       dropout=dropout)
        decoder_optimizer = torch.optim.Adam(params=filter(
            lambda p: p.requires_grad, decoder.parameters()),
                                             lr=decoder_lr)
        encoder = Encoder()
        encoder.fine_tune(fine_tune_encoder)
        encoder_optimizer = torch.optim.Adam(
            params=filter(lambda p: p.requires_grad, encoder.parameters()),
            lr=encoder_lr) if fine_tune_encoder else None

    else:
        checkpoint = torch.load(checkpoint)
        start_epoch = checkpoint['epoch'] + 1
        epochs_since_improvement = checkpoint['epochs_since_improvement']
        best_bleu4 = checkpoint['bleu-4']
        decoder = checkpoint['decoder']
        decoder_optimizer = checkpoint['decoder_optimizer']
        encoder = checkpoint['encoder']
        encoder_optimizer = checkpoint['encoder_optimizer']
        if fine_tune_encoder is True and encoder_optimizer is None:
            encoder.fine_tune(fine_tune_encoder)
            encoder_optimizer = torch.optim.Adam(params=filter(
                lambda p: p.requires_grad, encoder.parameters()),
                                                 lr=encoder_lr)

    if torch.cuda.is_available():
        encoder.cuda()
        decoder.cuda()

    criterion = nn.CrossEntropyLoss()
    normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                     std=[0.229, 0.224, 0.225])
    transform = transforms.Compose([
        transforms.RandomCrop(args.crop_size),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
    ])
    train_loader = get_loader(args.train_image_dir,
                              args.caption_path,
                              word_map,
                              transform,
                              args.batch_size,
                              shuffle=True,
                              num_workers=args.num_workers)
    val_loader = get_loader(args.val_image_dir,
                            args.caption_path,
                            word_map,
                            transform,
                            args.batch_size,
                            shuffle=True,
                            num_workers=args.num_workers)

    for epoch in range(start_epoch, epochs):
        if epochs_since_improvement == 20:
            break
        if epochs_since_improvement > 0 and epochs_since_improvement % 8 == 0:
            adjust_learning_rate(decoder_optimizer, 0.8)
            if fine_tune_encoder:
                adjust_learning_rate(encoder_optimizer, 0.8)

        train(train_loader=train_loader,
              encoder=encoder,
              decoder=decoder,
              criterion=criterion,
              encoder_optimizer=encoder_optimizer,
              decoder_optimizer=decoder_optimizer,
              epoch=epoch)

        recent_bleu4 = validate(val_loader=val_loader,
                                encoder=encoder,
                                decoder=decoder,
                                criterion=criterion)

        is_best = recent_bleu4 > best_bleu4
        best_bleu4 = max(recent_bleu4, best_bleu4)
        if not is_best:
            epochs_since_improvement += 1
            print("\nEpochs since last improvement: %d\n" %
                  (epochs_since_improvement, ))
        else:
            epochs_since_improvement = 0

        save_checkpoint(data_name, epoch, epochs_since_improvement, encoder,
                        decoder, encoder_optimizer, decoder_optimizer,
                        recent_bleu4, is_best)
def main():
    global epochs_since_G_improvement, epochs_since_D_improvement, checkpoint, start_epoch, fine_tune_encoder, best_loss, save_path, vis_dir, decoder_dim, lambd, convsize, std

    if checkpoint is None:
        decoder = Decoder(decoder_dim, gan=opt.gan)
        #decoder = Decoder(decoder_dim)
        decoder_optimizer = torch.optim.Adam(params=filter(
            lambda p: p.requires_grad, decoder.parameters()),
                                             lr=decoder_lr)
        encoder = Encoder()
        encoder.fine_tune(fine_tune_encoder)
        encoder_optimizer = torch.optim.Adam(
            params=filter(lambda p: p.requires_grad, encoder.parameters()),
            lr=encoder_lr) if fine_tune_encoder else None
        D = Discriminator()
        D_optimizer = torch.optim.Adam(params=filter(lambda p: p.requires_grad,
                                                     encoder.parameters()),
                                       lr=encoder_lr)

    else:
        checkpoint = torch.load(checkpoint)
        start_epoch = checkpoint['epoch'] + 1
        epochs_since_improvement = checkpoint['epochs_since_improvement']
        G_best_loss = checkpoint['testLoss']
        decoder = checkpoint['decoder']
        decoder_optimizer = checkpoint['decoder_optimizer']
        encoder = checkpoint['encoder']
        encoder_optimizer = checkpoint['encoder_optimizer']
        D = checkpoint['D']
        D_optimizer = checkpoint['D_optimizer']
        if fine_tune_encoder is True and encoder_optimizer is None:
            encoder.fine_tune(fine_tune_encoder)
            encoder_optimizer = torch.optim.Adam(params=filter(
                lambda p: p.requires_grad, encoder.parameters()),
                                                 lr=encoder_lr)

    decoder = decoder.to(device)
    encoder = encoder.to(device)
    D = D.to(device)

    #criterion = nn.MSELoss().to(device)
    criterion = {'d': DLoss().to(device), 'g': GLoss().to(device)}
    #criterion = traj_loss().to(device)

    dataset = GuiderDataset(data_path, 0.2, max_len=max_len)
    train_loader = Data.DataLoader(dataset.train_set(),
                                   batch_size=batch_size,
                                   shuffle=False,
                                   drop_last=True)
    val_loader = Data.DataLoader(dataset.test_set(),
                                 batch_size=batch_size,
                                 shuffle=False,
                                 drop_last=True)

    for epoch in range(start_epoch, start_epoch + epochs):
        writer = SummaryWriter(log_dir='log2/log')
        # Decay learning rate if there is no improvement for 8 consecutive epochs, and terminate training after 20
        if epochs_since_G_improvement == 20:
            break
        if epochs_since_G_improvement > 0 and epochs_since_G_improvement % 8 == 0:
            adjust_learning_rate(decoder_optimizer, 0.8)
            if fine_tune_encoder:
                adjust_learning_rate(encoder_optimizer, 0.8)

        # One epoch's training
        train(train_loader=train_loader,
              encoder=encoder,
              decoder=decoder,
              D=D,
              criterion=criterion,
              encoder_optimizer=encoder_optimizer,
              decoder_optimizer=decoder_optimizer,
              D_optimizer=D_optimizer,
              epoch=epoch,
              lambd=lambd,
              convsize=convsize,
              std=std,
              writer=writer)

        # One epoch's validation, return the average loss of each batch in this epoch
        G_loss, D_loss, imgs, pred, pred_vis, enter, esc, length = validate(
            val_loader=val_loader,
            encoder=encoder,
            decoder=decoder,
            D=D,
            criterion=criterion,
            lambd=lambd,
            convsize=convsize,
            std=std,
            device=device)

        # visualize the last batch of validate epoch
        visualize(vis_dir, imgs, pred_vis, None, None, None, enter, esc,
                  length, epoch)

        # Check if there was an improvement
        G_is_best = G_loss < g_best_loss
        G_best_loss = min(G_loss, g_best_loss)
        if not G_is_best:
            epochs_since_G_improvement += 1
            print("\nEpochs since last improvement: %d\n" %
                  (epochs_since_D_improvement))
        else:
            epochs_since_G_improvement = 0

        D_is_best = D_loss < d_best_loss
        D_best_loss = min(D_loss, d_best_loss)
        if not D_is_best:
            epochs_since_D_improvement += 1
            print("\nEpochs since last improvement: %d\n" %
                  (epochs_since_D_improvement))
        else:
            epochs_since_D_improvement = 0
        # Save checkpoint
        save_checkpoint(save_path, epoch, epochs_since_G_improvement,
                        epochs_since_D_improvement, encoder, decoder, D,
                        encoder_optimizer, decoder_optimizer, D_optimizer,
                        G_loss, G_is_best, D_loss, D_is_best)