Пример #1
0
def main():
    # Parse the CLI arguments.
    args = parser.parse_args()

    # create directory for saving trained models.
    if not os.path.exists('models'):
        os.makedirs('models')

    # Create the tensorflow dataset.
    ds = DataLoader(args.input_dir, args.target_dir,
                    args.image_size).dataset(args.batch_size)

    # Initialize the GAN object.
    gan = FastSRGAN(args)

    if args.dis != None and args.gen != None:
        print("Loading pre-trained generator...")
        gan.generator = keras.models.load_model(args.gen)
        print("Loading pre-trained discriminator...")
        gan.discriminator = keras.models.load_model(args.dis)
    else:
        # Define the directory for saving pretrainig loss tensorboard summary.
        pretrain_summary_writer = tf.summary.create_file_writer(
            'logs/pretrain')

        # Run pre-training.
        pretrain_generator(gan, ds, pretrain_summary_writer)

    # Define the directory for saving the SRGAN training tensorbaord summary.
    train_summary_writer = tf.summary.create_file_writer('logs/train')

    # Run training.
    for epoch in range(args.epochs):
        print("Training Epoch #", epoch)
        train(gan, ds, args.save_iter, train_summary_writer)
Пример #2
0
def main():
    # 分析/处理CLI参数.
    args = parser.parse_args()

    # 创建目录以存储训练的模型
    if not os.path.exists('models'):
        os.makedirs('models')

    # 创建tensorflow数据集
    ds = DataLoader(args.image_dir, args.hr_size).dataset(args.batch_size)

    # 初始化GAN对象
    gan = FastSRGAN(args)

    # 定义保存预训练loss tensorboard摘要的目录
    pretrain_summary_writer = tf.summary.create_file_writer('logs/pretrain')

    # 执行预训练
    pretrain_generator(gan, ds, pretrain_summary_writer)

    # 定义保存SRGAN训练tensorbaord摘要的目录
    train_summary_writer = tf.summary.create_file_writer('logs/train')

    # 执行训练
    for _ in range(args.epochs):
        train(gan, ds, args.save_iter, train_summary_writer)
Пример #3
0
def main():
    # Parse the CLI arguments.
    args = parser.parse_args()

    # create directory for saving trained models.
    if not os.path.exists('models'):
        os.makedirs('models')

    # Create the tensorflow dataset.
    ds = DataLoader(args.image_dir, args.hr_size).dataset(args.batch_size)

    # Initialize the GAN object.
    gan = FastSRGAN(args)

    # Define the directory for saving pretrainig loss tensorboard summary.
    pretrain_summary_writer = tf.summary.create_file_writer('logs/pretrain')

    # Run pre-training.
    pretrain_generator(gan, ds, pretrain_summary_writer)

    # Define the directory for saving the SRGAN training tensorbaord summary.
    train_summary_writer = tf.summary.create_file_writer('logs/train')

    # Run training.
    for _ in range(args.epochs):
        train(gan, ds, args.save_iter, train_summary_writer)
Пример #4
0
def main():
    # Parse the CLI arguments.
    args = parser.parse_args()

    # create directory for saving trained models.
    if not os.path.exists('models'):
        os.makedirs('models')

    # Create the tensorflow dataset.
    print('Dataset Loading.....')
    ds = DataLoader(args.image_dir, args.hr_size).dataset(args.batch_size)
    print('Complete!')

    # Initialize the GAN object.
    print('GAN Initializing......')
    gan = FastSRGAN(args)
    print('Complete!')

    # Define the directory for saving pretrainig loss tensorboard summary.
    print('Pretraon_summary_writing.....')
    pretrain_summary_writer = tf.summary.create_file_writer('logs/pretrain')
    print('Complete!')

    # Run pre-training.
    print('Run Pre-training.....')
    pretrain_generator(gan, ds, pretrain_summary_writer)
    print('Complete!')

    # Define the directory for saving the SRGAN training tensorbaord summary.
    train_summary_writer = tf.summary.create_file_writer('logs/train')

    # Run training.
    print('===== Training Start =====')
    for i in range(args.epochs):
        print('epoch = {:02d}/{:02d}'.format(i+1, args.epochs))
        train(gan, ds, args.save_iter, train_summary_writer)
    print('Done!')