Пример #1
0
def main(args):
    if (not args.do_train) and (not args.do_valid) and (not args.do_test) and (
            not args.evaluate_train):
        raise ValueError('one of train/val/test mode must be choosed.')

    if args.init_checkpoint:
        override_config(args)

    args.save_path = 'log/%s/%s/%s-%s/%s' % (
        args.dataset, args.model, args.hidden_dim, args.gamma,
        time.time()) if args.save_path == None else args.save_path
    writer = SummaryWriter(args.save_path)

    # Write logs to checkpoint and console
    set_logger(args)

    dataset = LinkPropPredDataset(name=args.dataset)
    split_dict = dataset.get_edge_split()
    nentity = dataset.graph['num_nodes']
    nrelation = int(max(dataset.graph['edge_reltype'])[0]) + 1

    evaluator = Evaluator(name=args.dataset)

    args.nentity = nentity
    args.nrelation = nrelation

    logging.info('Model: %s' % args.model)
    logging.info('Dataset: %s' % args.dataset)
    logging.info('#entity: %d' % nentity)
    logging.info('#relation: %d' % nrelation)

    train_triples = split_dict['train']
    logging.info('#train: %d' % len(train_triples['head']))
    valid_triples = split_dict['valid']
    logging.info('#valid: %d' % len(valid_triples['head']))
    test_triples = split_dict['test']
    logging.info('#test: %d' % len(test_triples['head']))

    train_count, train_true_head, train_true_tail = defaultdict(
        lambda: 4), defaultdict(list), defaultdict(list)
    for i in tqdm(range(len(train_triples['head']))):
        head, relation, tail = train_triples['head'][i], train_triples[
            'relation'][i], train_triples['tail'][i]
        train_count[(head, relation)] += 1
        train_count[(tail, -relation - 1)] += 1
        train_true_head[(relation, tail)].append(head)
        train_true_tail[(head, relation)].append(tail)

    kge_model = KGEModel(
        model_name=args.model,
        nentity=nentity,
        nrelation=nrelation,
        hidden_dim=args.hidden_dim,
        gamma=args.gamma,
        double_entity_embedding=args.double_entity_embedding,
        double_relation_embedding=args.double_relation_embedding,
        evaluator=evaluator)

    logging.info('Model Parameter Configuration:')
    for name, param in kge_model.named_parameters():
        logging.info('Parameter %s: %s, require_grad = %s' %
                     (name, str(param.size()), str(param.requires_grad)))

    if args.cuda:
        kge_model = kge_model.cuda()

    if args.do_train:
        # Set training dataloader iterator
        train_dataloader_head = DataLoader(
            TrainDataset(train_triples, nentity, nrelation,
                         args.negative_sample_size, 'head-batch', train_count,
                         train_true_head, train_true_tail),
            batch_size=args.batch_size,
            shuffle=True,
            num_workers=max(1, args.cpu_num // 2),
            collate_fn=TrainDataset.collate_fn)

        train_dataloader_tail = DataLoader(
            TrainDataset(train_triples, nentity, nrelation,
                         args.negative_sample_size, 'tail-batch', train_count,
                         train_true_head, train_true_tail),
            batch_size=args.batch_size,
            shuffle=True,
            num_workers=max(1, args.cpu_num // 2),
            collate_fn=TrainDataset.collate_fn)

        train_iterator = BidirectionalOneShotIterator(train_dataloader_head,
                                                      train_dataloader_tail)

        # Set training configuration
        current_learning_rate = args.learning_rate
        optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad,
                                            kge_model.parameters()),
                                     lr=current_learning_rate)
        if args.warm_up_steps:
            warm_up_steps = args.warm_up_steps
        else:
            warm_up_steps = args.max_steps // 2

    if args.init_checkpoint:
        # Restore model from checkpoint directory
        logging.info('Loading checkpoint %s...' % args.init_checkpoint)
        checkpoint = torch.load(
            os.path.join(args.init_checkpoint, 'checkpoint'))
        init_step = checkpoint['step']
        kge_model.load_state_dict(checkpoint['model_state_dict'])
        if args.do_train:
            current_learning_rate = checkpoint['current_learning_rate']
            warm_up_steps = checkpoint['warm_up_steps']
            optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
    else:
        logging.info('Ramdomly Initializing %s Model...' % args.model)
        init_step = 0

    step = init_step

    logging.info('Start Training...')
    logging.info('init_step = %d' % init_step)
    logging.info('batch_size = %d' % args.batch_size)
    logging.info('negative_adversarial_sampling = %d' %
                 args.negative_adversarial_sampling)
    logging.info('hidden_dim = %d' % args.hidden_dim)
    logging.info('gamma = %f' % args.gamma)
    logging.info('negative_adversarial_sampling = %s' %
                 str(args.negative_adversarial_sampling))
    if args.negative_adversarial_sampling:
        logging.info('adversarial_temperature = %f' %
                     args.adversarial_temperature)

    # Set valid dataloader as it would be evaluated during training

    if args.do_train:
        logging.info('learning_rate = %d' % current_learning_rate)

        training_logs = []

        #Training Loop
        for step in range(init_step, args.max_steps):

            log = kge_model.train_step(kge_model, optimizer, train_iterator,
                                       args)
            training_logs.append(log)

            if step >= warm_up_steps:
                current_learning_rate = current_learning_rate / 10
                logging.info('Change learning_rate to %f at step %d' %
                             (current_learning_rate, step))
                optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad,
                                                    kge_model.parameters()),
                                             lr=current_learning_rate)
                warm_up_steps = warm_up_steps * 3

            if step % args.save_checkpoint_steps == 0 and step > 0:  # ~ 41 seconds/saving
                save_variable_list = {
                    'step': step,
                    'current_learning_rate': current_learning_rate,
                    'warm_up_steps': warm_up_steps
                }
                save_model(kge_model, optimizer, save_variable_list, args)

            if step % args.log_steps == 0:
                metrics = {}
                for metric in training_logs[0].keys():
                    metrics[metric] = sum(
                        [log[metric]
                         for log in training_logs]) / len(training_logs)
                log_metrics('Train', step, metrics, writer)
                training_logs = []

            if args.do_valid and step % args.valid_steps == 0 and step > 0:
                logging.info('Evaluating on Valid Dataset...')
                metrics = kge_model.test_step(kge_model, valid_triples, args)
                log_metrics('Valid', step, metrics, writer)

        save_variable_list = {
            'step': step,
            'current_learning_rate': current_learning_rate,
            'warm_up_steps': warm_up_steps
        }
        save_model(kge_model, optimizer, save_variable_list, args)

    if args.do_valid:
        logging.info('Evaluating on Valid Dataset...')
        metrics = kge_model.test_step(kge_model, valid_triples, args)
        log_metrics('Valid', step, metrics, writer)

    if args.do_test:
        logging.info('Evaluating on Test Dataset...')
        metrics = kge_model.test_step(kge_model, test_triples, args)
        log_metrics('Test', step, metrics, writer)

    if args.evaluate_train:
        logging.info('Evaluating on Training Dataset...')
        small_train_triples = {}
        indices = np.random.choice(len(train_triples['head']),
                                   args.ntriples_eval_train,
                                   replace=False)
        for i in train_triples:
            small_train_triples[i] = train_triples[i][indices]
        metrics = kge_model.test_step(kge_model,
                                      small_train_triples,
                                      args,
                                      random_sampling=True)
        log_metrics('Train', step, metrics, writer)
Пример #2
0
def main(args):
    if (not args.do_train) and (not args.do_valid) and (not args.do_test):
        raise ValueError('one of train/val/test mode must be choosed.')

    if args.init_checkpoint:
        override_config(args)
    elif args.data_path is None:
        raise ValueError('one of init_checkpoint/data_path must be choosed.')

    if args.do_train and args.save_path is None:
        raise ValueError('Where do you want to save your trained model?')

    if args.save_path and not os.path.exists(args.save_path):
        os.makedirs(args.save_path)

    # Write logs to checkpoint and console
    set_logger(args)

    with open(os.path.join(args.data_path, 'entities.dict')) as fin:
        entity2id = dict()
        for line in fin:
            eid, entity = line.strip().split('\t')
            entity2id[entity] = int(eid)

    with open(os.path.join(args.data_path, 'relations.dict')) as fin:
        relation2id = dict()
        for line in fin:
            rid, relation = line.strip().split('\t')
            relation2id[relation] = int(rid)

    nentity = len(entity2id)
    nrelation = len(relation2id)

    args.nentity = nentity
    args.nrelation = nrelation

    logging.info('Model: %s' % args.model)
    logging.info('Data Path: %s' % args.data_path)
    logging.info('#entity: %d' % nentity)
    logging.info('#relation: %d' % nrelation)

    train_triples = read_triple(os.path.join(args.data_path, 'train.txt'),
                                entity2id, relation2id)
    logging.info('#train: %d' % len(train_triples))
    valid_triples = read_triple(os.path.join(args.data_path, 'valid.txt'),
                                entity2id, relation2id)
    logging.info('#valid: %d' % len(valid_triples))
    test_triples = read_triple(os.path.join(args.data_path, 'test.txt'),
                               entity2id, relation2id)
    logging.info('#test: %d' % len(test_triples))

    #All true triples
    all_true_triples = train_triples + valid_triples + test_triples
    train_evaluate_triples = sample(train_triples, 4000)

    kge_model = KGEModel(model_name=args.model,
                         nentity=nentity,
                         nrelation=nrelation,
                         hidden_dim=args.hidden_dim,
                         gamma=args.gamma)

    logging.info('Model Parameter Configuration:')
    for name, param in kge_model.named_parameters():
        logging.info('Parameter %s: %s, require_grad = %s' %
                     (name, str(param.size()), str(param.requires_grad)))

    if args.cuda:
        kge_model = kge_model.cuda()

    if args.do_train:
        # Set training dataloader iterator
        train_dataloader_head = DataLoader(TrainDataset(
            train_triples, nentity, nrelation, args.negative_sample_size,
            'head-batch'),
                                           batch_size=args.batch_size,
                                           shuffle=True,
                                           num_workers=1,
                                           collate_fn=TrainDataset.collate_fn)

        train_dataloader_tail = DataLoader(TrainDataset(
            train_triples, nentity, nrelation, args.negative_sample_size,
            'tail-batch'),
                                           batch_size=args.batch_size,
                                           shuffle=True,
                                           num_workers=1,
                                           collate_fn=TrainDataset.collate_fn)

        train_iterator = BidirectionalOneShotIterator(train_dataloader_head,
                                                      train_dataloader_tail)

        # Set training configuration
        current_learning_rate = args.learning_rate

        optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad,
                                            kge_model.parameters()),
                                     lr=current_learning_rate)

        warm_up_steps = args.max_steps // 2

    if args.init_checkpoint:
        # Restore model from checkpoint directory
        logging.info('Loading checkpoint %s...' % args.init_checkpoint)
        checkpoint = torch.load(
            os.path.join(args.init_checkpoint, 'checkpoint'))
        init_step = checkpoint['step']
        kge_model.load_state_dict(checkpoint['model_state_dict'])
        if args.do_train:
            current_learning_rate = checkpoint['current_learning_rate']
            warm_up_steps = checkpoint['warm_up_steps']
            optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
    else:
        logging.info('Ramdomly Initializing %s Model...' % args.model)
        init_step = 0

    step = init_step

    logging.info('Start Training...')
    logging.info('init_step = %d' % init_step)
    logging.info('batch_size = %d' % args.batch_size)
    logging.info('hidden_dim = %d' % args.hidden_dim)
    logging.info('gamma = %f' % args.gamma)

    # Set valid dataloader as it would be evaluated during training

    if args.do_train:
        logging.info('learning_rate = %f' % current_learning_rate)

        training_logs = []

        #writer = SummaryWriter('loss')

        #Training Loop
        for step in range(init_step, args.max_steps):

            log, loss = kge_model.train_step(kge_model, optimizer,
                                             train_iterator, args)

            training_logs.append(log)

            if step % args.save_checkpoint_steps == 0:
                save_variable_list = {
                    'step': step,
                    'current_learning_rate': current_learning_rate,
                    'warm_up_steps': warm_up_steps
                }
                save_model(kge_model, optimizer, save_variable_list, args)

            if step % args.log_steps == 0:
                metrics = {}
                for metric in training_logs[0].keys():
                    metrics[metric] = sum(
                        [log[metric]
                         for log in training_logs]) / len(training_logs)
                log_metrics('Training average', step, metrics)
                training_logs = []

            if args.do_valid and step >= args.max_steps - 1000 and step % 100 == 0:
                logging.info('Evaluating on Valid Dataset...')
                metrics = kge_model.test_step(kge_model, valid_triples,
                                              all_true_triples, args)
                log_metrics('Valid', step, metrics)

        save_variable_list = {
            'step': step,
            'current_learning_rate': current_learning_rate,
            'warm_up_steps': warm_up_steps
        }
        save_model(kge_model, optimizer, save_variable_list, args)

    if args.do_valid:
        logging.info('Evaluating on Valid Dataset...')
        metrics = kge_model.test_step(kge_model, valid_triples,
                                      all_true_triples, args)
        log_metrics('Valid', step, metrics)

    if args.do_test:
        logging.info('Evaluating on Test Dataset...')
        metrics = kge_model.test_step(kge_model, test_triples,
                                      all_true_triples, args)
        log_metrics('Test', step, metrics)
Пример #3
0
def main(args):
    if args.init_checkpoint:
        override_config(args)
    elif args.data_path is None:
        raise ValueError('one of init_checkpoint/data_path must be choosed.')

    if args.save_path is None:
        raise ValueError('Where do you want to save your trained model?')
    
    if args.save_path and not os.path.exists(args.save_path):
        os.makedirs(args.save_path)
    
    # Write logs to checkpoint and console
    set_logger(args)

    with open(args.data_path) as fin:
        entity2id = bidict()
        relation2id = bidict()
        train_triples = []
        for line in fin:
            _tmp = [x.strip() for x in re.split("[,\t]", line) if x.strip()][:3]
            if len(_tmp) < 3:
                continue
            e1, relation, e2 = tuple(_tmp)
            if not e1 in entity2id:
                entity2id[e1] = len(entity2id)
            if not e2 in entity2id:
                entity2id[e2] = len(entity2id)
            if not relation in relation2id:
                relation2id[relation] = len(relation2id)
            train_triples.append((entity2id[e1], relation2id[relation], entity2id[e2]))

    nentity = len(entity2id)
    nrelation = len(relation2id)
    
    args.nentity = nentity
    args.nrelation = nrelation
    
    logging.info('Model: %s' % args.model)
    logging.info('Data Path: %s' % args.data_path)
    logging.info('#entity: %d' % nentity)
    logging.info('#relation: %d' % nrelation)
    
    logging.info('#train: %d' % len(train_triples))
    
    #All true triples
    all_true_triples = train_triples
    
    kge_model = KGEModel(
        model_name=args.model,
        nentity=nentity,
        nrelation=nrelation,
        hidden_dim=args.hidden_dim,
        gamma=args.gamma,
        double_entity_embedding=args.double_entity_embedding,
        double_relation_embedding=args.double_relation_embedding
    )
    
    logging.info('Model Parameter Configuration:')
    for name, param in kge_model.named_parameters():
        logging.info('Parameter %s: %s, require_grad = %s' % (name, str(param.size()), str(param.requires_grad)))

    if args.cuda:
        kge_model = kge_model.cuda()
    
    # Set training dataloader iterator
    train_dataloader_head = DataLoader(
        TrainDataset(train_triples, nentity, nrelation, args.negative_sample_size, 'head-batch'), 
        batch_size=args.batch_size,
        shuffle=True, 
        num_workers=max(1, args.cpu_num//2),
        collate_fn=TrainDataset.collate_fn
    )
    
    train_dataloader_tail = DataLoader(
        TrainDataset(train_triples, nentity, nrelation, args.negative_sample_size, 'tail-batch'), 
        batch_size=args.batch_size,
        shuffle=True, 
        num_workers=max(1, args.cpu_num//2),
        collate_fn=TrainDataset.collate_fn
    )
    
    train_iterator = BidirectionalOneShotIterator(train_dataloader_head, train_dataloader_tail)
    
    # Set training configuration
    current_learning_rate = args.learning_rate
    optimizer = torch.optim.Adam(
        filter(lambda p: p.requires_grad, kge_model.parameters()), 
        lr=current_learning_rate
    )
    if args.warm_up_steps:
        warm_up_steps = args.warm_up_steps
    else:
            warm_up_steps = args.max_steps // 2

    if args.init_checkpoint:
        # Restore model from checkpoint directory
        logging.info('Loading checkpoint %s...' % args.init_checkpoint)
        checkpoint = torch.load(os.path.join(args.init_checkpoint, 'checkpoint'))
        init_step = checkpoint['step']
        kge_model.load_state_dict(checkpoint['model_state_dict'])
        
        current_learning_rate = checkpoint['current_learning_rate']
        warm_up_steps = checkpoint['warm_up_steps']
        optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
    else:
        logging.info('Ramdomly Initializing %s Model...' % args.model)
        init_step = 0
    
    step = init_step
    
    logging.info('Start Training...')
    logging.info('init_step = %d' % init_step)
    logging.info('learning_rate = %d' % current_learning_rate)
    logging.info('batch_size = %d' % args.batch_size)
    logging.info('negative_adversarial_sampling = %d' % args.negative_adversarial_sampling)
    logging.info('hidden_dim = %d' % args.hidden_dim)
    logging.info('gamma = %f' % args.gamma)
    logging.info('negative_adversarial_sampling = %s' % str(args.negative_adversarial_sampling))
    if args.negative_adversarial_sampling:
        logging.info('adversarial_temperature = %f' % args.adversarial_temperature)
    
    # Set valid dataloader as it would be evaluated during training
    
    training_logs = []
    
    #Training Loop
    for step in range(init_step, args.max_steps):
        
        log = kge_model.train_step(kge_model, optimizer, train_iterator, args)
        
        training_logs.append(log)
        
        if step >= warm_up_steps:
            current_learning_rate = current_learning_rate / 10
            logging.info('Change learning_rate to %f at step %d' % (current_learning_rate, step))
            optimizer = torch.optim.Adam(
                filter(lambda p: p.requires_grad, kge_model.parameters()), 
                lr=current_learning_rate
            )
            warm_up_steps = warm_up_steps * 3
        
        if step % args.save_checkpoint_steps == 0:
            save_variable_list = {
                'step': step, 
                'current_learning_rate': current_learning_rate,
                'warm_up_steps': warm_up_steps
            }
            save_model(kge_model, optimizer, save_variable_list, args, entity2id, relation2id)
            
        if step % args.log_steps == 0:
            metrics = {}
            for metric in training_logs[0].keys():
                metrics[metric] = sum([log[metric] for log in training_logs])/len(training_logs)
            log_metrics('Training average', step, metrics)
            training_logs = []
            
    save_variable_list = {
        'step': step, 
        'current_learning_rate': current_learning_rate,
        'warm_up_steps': warm_up_steps
    }
    save_model(kge_model, optimizer, save_variable_list, args, entity2id, relation2id)
        
    if args.evaluate_train:
        logging.info('Evaluating on Training Dataset...')
        metrics = kge_model.test_step(kge_model, train_triples, all_true_triples, args)
        log_metrics('Test', step, metrics)
Пример #4
0
def main(args):
    if (not args.do_train) and (not args.do_valid) and (not args.do_test):
        raise ValueError('one of train/val/test mode must be choosed.')

    if args.init_checkpoint:
        override_config(args)
    elif args.data_path is None:
        raise ValueError('one of init_checkpoint/data_path must be choosed.')

    if args.do_train and args.save_path is None:
        raise ValueError('Where do you want to save your trained model?')

    if args.save_path and not os.path.exists(args.save_path):
        os.makedirs(args.save_path)

    # Write logs to checkpoint and console
    set_logger(args)

    with open(os.path.join(args.data_path, 'entities.dict')) as fin:
        entity2id = dict()
        id2entity = dict()
        for line in fin:
            eid, entity = line.strip().split('\t')
            entity2id[entity] = int(eid)
            id2entity[int(eid)] = entity

    with open(os.path.join(args.data_path, 'relations.dict')) as fin:
        relation2id = dict()
        id2relationship = dict()
        for line in fin:
            rid, relation = line.strip().split('\t')
            relation2id[relation] = int(rid)
            id2relationship[int(rid)] = relation

    # Read regions for Countries S* datasets
    if args.countries:
        regions = list()
        with open(os.path.join(args.data_path, 'regions.list')) as fin:
            for line in fin:
                region = line.strip()
                regions.append(entity2id[region])
        args.regions = regions

    e_vocab = Dictionary(tok2ind=entity2id, ind2tok=id2entity)
    r_vocab = Dictionary(tok2ind=relation2id, ind2tok=id2relationship)
    ## TODO: add graph file
    graph = KB(os.path.join(args.data_path, 'train.txt'),
               e_vocab=e_vocab,
               r_vocab=r_vocab)

    nentity = len(entity2id)
    nrelation = len(relation2id)

    args.nentity = nentity
    args.nrelation = nrelation

    logging.info('Model: %s' % args.model)
    logging.info('Data Path: %s' % args.data_path)
    logging.info('#entity: %d' % nentity)
    logging.info('#relation: %d' % nrelation)

    train_triples = read_triple(os.path.join(args.data_path, 'train.txt'),
                                entity2id, relation2id)
    logging.info('#train: %d' % len(train_triples))
    valid_triples = read_triple(os.path.join(args.data_path, 'valid.txt'),
                                entity2id, relation2id)
    logging.info('#valid: %d' % len(valid_triples))
    test_triples = read_triple(os.path.join(args.data_path, 'test.txt'),
                               entity2id, relation2id)
    logging.info('#test: %d' % len(test_triples))
    candidate_entities = None
    if args.rerank_minerva:
        candidate_entities = defaultdict(set)
        with open(
                "/home/shdhulia//Limits-of-Path-Reasoner/outputs/FB15K-237/thisone_test/all_answers.txt"
        ) as candidate_file:
            # with open("/home/shdhulia/minerva_answers/fb.txt") as candidate_file:
            for line in candidate_file:
                pt = line.strip().split("\t")
                e1 = entity2id[pt[0]]
                r = relation2id[pt[1]]
                predicted_es = set(
                    [entity2id[p] for p in pt[2:] if p in entity2id])
                candidate_entities[(e1, r)] = set(predicted_es)

    #All true triples
    all_true_triples = train_triples + valid_triples + test_triples

    kge_model = KGEModel(
        model_name=args.model,
        nentity=nentity,
        nrelation=nrelation,
        hidden_dim=args.hidden_dim,
        gamma=args.gamma,
        double_entity_embedding=args.double_entity_embedding,
        double_relation_embedding=args.double_relation_embedding)

    logging.info('Model Parameter Configuration:')
    for name, param in kge_model.named_parameters():
        logging.info('Parameter %s: %s, require_grad = %s' %
                     (name, str(param.size()), str(param.requires_grad)))

    if args.cuda:
        kge_model = kge_model.cuda()

    if args.do_train:
        # Set training dataloader iterator
        # train_dataloader_head = DataLoader(
        #     TrainDataset(train_triples, nentity, nrelation, args.negative_sample_size, 'head-batch'),
        #     batch_size=args.batch_size,
        #     shuffle=True,
        #     num_workers=max(1, args.cpu_num//2),
        #     collate_fn=TrainDataset.collate_fn
        # )

        train_dataloader_tail = DataLoader(
            TrainDataset(train_triples,
                         nentity,
                         nrelation,
                         args.negative_sample_size,
                         'tail-batch',
                         KB=graph),
            batch_size=args.batch_size,
            shuffle=True,
            num_workers=max(1, args.cpu_num // 2),
            collate_fn=TrainDataset.collate_fn)

        # train_iterator = BidirectionalOneShotIterator(train_dataloader_head, train_dataloader_tail)
        train_iterator = OneShotIterator(train_dataloader_tail)

        # Set training configuration
        current_learning_rate = args.learning_rate
        optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad,
                                            kge_model.parameters()),
                                     lr=current_learning_rate)
        if args.warm_up_steps:
            warm_up_steps = args.warm_up_steps
        else:
            warm_up_steps = args.max_steps // 2

    if args.init_checkpoint:
        # Restore model from checkpoint directory
        logging.info('Loading checkpoint %s...' % args.init_checkpoint)
        checkpoint = torch.load(
            os.path.join(args.init_checkpoint, 'checkpoint'))
        init_step = checkpoint['step']
        kge_model.load_state_dict(checkpoint['model_state_dict'])
        if args.do_train:
            current_learning_rate = checkpoint['current_learning_rate']
            warm_up_steps = checkpoint['warm_up_steps']
            optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
    else:
        logging.info('Ramdomly Initializing %s Model...' % args.model)
        init_step = 0

    step = init_step

    logging.info('Start Training...')
    logging.info('init_step = %d' % init_step)

    logging.info('batch_size = %d' % args.batch_size)
    logging.info('negative_adversarial_sampling = %d' %
                 args.negative_adversarial_sampling)
    logging.info('hidden_dim = %d' % args.hidden_dim)
    logging.info('gamma = %f' % args.gamma)
    logging.info('negative_adversarial_sampling = %s' %
                 str(args.negative_adversarial_sampling))
    if args.negative_adversarial_sampling:
        logging.info('adversarial_temperature = %f' %
                     args.adversarial_temperature)

    # Set valid dataloader as it would be evaluated during training

    if args.do_train:
        logging.info('learning_rate = %d' % current_learning_rate)

        training_logs = []

        #Training Loop
        for step in range(init_step, args.max_steps):

            log = kge_model.train_step(kge_model, optimizer, train_iterator,
                                       args)

            training_logs.append(log)

            if step >= warm_up_steps:
                current_learning_rate = current_learning_rate / 10
                logging.info('Change learning_rate to %f at step %d' %
                             (current_learning_rate, step))
                optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad,
                                                    kge_model.parameters()),
                                             lr=current_learning_rate)
                warm_up_steps = warm_up_steps * 3

            if step % args.save_checkpoint_steps == 0:
                save_variable_list = {
                    'step': step,
                    'current_learning_rate': current_learning_rate,
                    'warm_up_steps': warm_up_steps
                }
                save_model(kge_model, optimizer, save_variable_list, args)

            if step % args.log_steps == 0:
                metrics = {}
                for metric in training_logs[0].keys():
                    metrics[metric] = sum(
                        [log[metric]
                         for log in training_logs]) / len(training_logs)
                log_metrics('Training average', step, metrics)
                training_logs = []

            if args.do_valid and step % args.valid_steps == 0:
                logging.info('Evaluating on Valid Dataset...')
                metrics = kge_model.test_step(kge_model, valid_triples,
                                              all_true_triples, args)
                log_metrics('Valid', step, metrics)

        save_variable_list = {
            'step': step,
            'current_learning_rate': current_learning_rate,
            'warm_up_steps': warm_up_steps
        }
        save_model(kge_model, optimizer, save_variable_list, args)

    if args.do_valid:
        logging.info('Evaluating on Valid Dataset...')
        metrics = kge_model.test_step(kge_model,
                                      valid_triples,
                                      all_true_triples,
                                      args,
                                      candidate_entities,
                                      id2e=id2entity,
                                      id2rel=id2relationship)
        log_metrics('Valid', step, metrics)

    # if args.do_test:
    #     logging.info('Evaluating on Test Dataset...')
    #     metrics = kge_model.test_step(kge_model, test_triples, all_true_triples, args)
    #     log_metrics('Test', step, metrics)

    if args.do_test:
        logging.info('Evaluating on Test Dataset...')
        metrics = kge_model.test_step(kge_model,
                                      test_triples,
                                      all_true_triples,
                                      args,
                                      candidate_entities,
                                      id2e=id2entity,
                                      id2rel=id2relationship)
        log_metrics('Test', step, metrics)

    if args.evaluate_train:
        logging.info('Evaluating on Training Dataset...')
        metrics = kge_model.test_step(kge_model, train_triples,
                                      all_true_triples, args)
        log_metrics('Test', step, metrics)
Пример #5
0
print("start training")
init_step = 1
total_steps = 500001
test_steps = 10000
last_loss = 100
score = 0
need_to_load_checkpoint = True

if need_to_load_checkpoint:
    _, init_step, score, last_loss = load_checkpoint(model, optim, checkpoint_path)

progbar = Progbar(max_step=total_steps - init_step)
start_time = time.time()

for step in range(init_step, total_steps):
    loss = model.train_step(model, optim, train_iterator, device)
    progbar.update(step - init_step, [
        ("step", step - init_step),
        ("loss", loss),
        ("cost", round((time.time() - start_time)))
    ])
    summary_writer.add_scalar(tag='Loss/train', scalar_value=loss, global_step=step)

    if step > init_step and step % test_steps == 0:
        print("\n属性消融实验")
        left_vec = t.get_vec2(model.entity_embedding, t.left_ids)
        right_vec = t.get_vec2(model.entity_embedding, t.right_ids)
        hits = t.get_hits(left_vec, right_vec)
        hits_left = hits["left"]
        hits_right = hits["right"]
        left_hits_10 = hits_left[2][1]